DEAP-3600 Dark Matter Search at SNOLAB

Marcin Kuźniak
Queen's University, Kingston, Canada

(for the DEAP collaboration)
DEAP-3600 Collaboration

Carleton University K. Graham, C. Ouellet, K. Brown

SNOLAB/Laurentian B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, T. Pollmann

SNOLAB I. Lawson, K. McFarlane, P. Liimatainen, O. Li, E. Vazquez Jauregui

TRIUMF F. Retiere, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, A. Muir, C. Ohlmann, K. Olchanski, V. Strickland

Rutherford Appleton Laboratory P. Majewski

Royal Holloway University of London J. Monroe, J. Walding, A. Butcher, N. Seeburn

University of Sussex S.J.M. Peeters

+ Close links with the MiniCLEAN collaboration
Outline

- WIMP dark matter search status
- Latest projections for simple SUSY models
- Liquid argon as a target
- DEAP-3600 detector
- Background mitigation
- Irreducible neutrino backgrounds
- Prospects for a multi-tonne single-phase LAr detector
- Summary
All dark matter so far...

A number of anomalous signals or controversial claims have been reported...

However, no clear generally accepted evidence yet

adapted from Adam Falkowski's figure:
http://resonaances.blogspot.com/2014/03/weekend-plot-all-of-dark-matter.html

M. Kuźniak, PASCOS 2014
Current searches

- Unclear situation and significant tension at low energies
- Since recently, dominance of liquid noble gas detectors

Adapted from LUX Collaboration, PRL112,091303 (2014)
Latest experimental results favour \(~1\text{TeV}\) WIMPs (cMSSM and NUHM)

(includes LHC and the recent LUX limit)

\(\Rightarrow\) see talk by A. Williams (Tue afternoon, session B)

M. Kuźniak, PASCOS 2014
Within reach for 1-tonne detectors

Adapted from L. Roszkowski, E.M Sessolo, A.J. Williams, arXiv:1405.4289v1
(includes LHC and the recent LUX limit)

M. Kuźniak, PASCOS 2014
Other models...

- A fairly robust prediction, with a number of other *simple* models giving a preferred mass of ~few hundred GeV - ~1 TeV
 - ...
- A variety of other (*more complex*) models giving predictions at rather low ~1-10 GeV WIMP mass
- (And of course other dark matter candidates are there, too)
Well-separated singlet and triplet lifetimes in argon allow for good pulse-shape discrimination (PSD) of β/γ's using only scintillation time information.

- **PSD to 10^{-8} demonstrated with DEAP-1**

- For DEAP-3600 projected to 10^{-10} at 15 keVee, sufficient to remove background from cosmogenic 39Ar.

- Very large target masses possible, since no absorption of UV scintillation photons in argon, and no e-drift requirements.

- **1000 kg** argon target allows 10^{-46} cm2 sensitivity (SI) with ~15 keVee (60 keVr) threshold, 3-year run.
Pulse shape discrimination (PSD)

Ar singlet and triplet excited states have well separated lifetimes (7ns vs. 1.5us)

Electric signal from PMT: Photoelectron counting:

\[
FP_{\text{prompt}} = \frac{N_{\text{prompt}}}{N_{\text{prompt}} + N_{\text{Late}}}
\]

Neutron (AmBe)

\(\gamma^{(22\text{Na})}\)

Prompt: 0-150ns
Late: 150ns-10\(\mu\)s

M. Kuźniak, PASCOS 2014
Xe and Ar for direct WIMP scattering

- Potential for very large and very sensitive searches
- Complementary
- For high WIMP masses Ar is very competitive with Xe

M. Kuźniak, PASCOS 2014
DEAP-3600 detector

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is “resurfaced” in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides + PE shielding provide neutron moderation

Detector immersed in 8 m water shield, instrumented with PMTs to veto muons

Located 2 km underground at SNOLAB

M. Kuźniak, PASCOS 2014
SNOLAB Subury Ontario Canada

Running: HALO
- Const: DEAP-3600
- MiniCLEAN

Const: COUPP-60

HALO Stub

Cube Hall

Cryopit

Running: DAMIC

J-Drift

Running: PICASSO

201..?: CDMS-TE

Paused: DEAP-1

South Drift

SNO Cavern

Personnel facilities

Const: SNO+
Backgrounds budget

<table>
<thead>
<tr>
<th>Background</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon in argon</td>
<td>< 1.4 nBq/kg</td>
</tr>
<tr>
<td>Surface α’s (tolerance using conservative pos. resolution)</td>
<td>< 0.2 μBq/m²</td>
</tr>
<tr>
<td>Surface α’s (tolerance using ML position resolution)</td>
<td>< 100 μBq/m²</td>
</tr>
<tr>
<td>Neutrons (all sources, in fiducial volume)</td>
<td>< 2 pBq/kg</td>
</tr>
<tr>
<td>Bg events, dominated by 39Ar</td>
<td>< 2 pBq/kg</td>
</tr>
<tr>
<td>Total Backgrounds</td>
<td>< 0.6 events</td>
</tr>
<tr>
<td>(3 Tonne-year in fiducial volume and Region of Interest)</td>
<td></td>
</tr>
</tbody>
</table>

M. Kuźniak, PASCOS 2014
Background mitigation

- **b/g events**: dominated by 39Ar rate, 1 Bq/kg
 PSD is very powerful in liquid argon, distinguish from recoils

- **neutron recoils**: (α,n)+fission, μ-induced
 NO neutrons! SNOLAB depth, clean detector materials
 (strict material screening & assay, quality assurance / co-operation with suppliers), shielding

- **surface events**: Rn daughters and other surface contamination
 Clean surfaces in-situ, position reconstruction, limited exposure to radon
PSD with DEAP-1

- PSD of $\sim 10^{-10}$ required to beat down backgrounds from 39Ar (a beta emitter).

-Measured with a tagged gamma source using DEAP-1 at SNOLAB.

P.-A. Amaudruz et al., submitted to Astroparticle Physics
Surface backgrounds

High energy spectrum, fitted with Radon daughters

Low energy spectrum in ROI

Low energy cut off + improved PSD => NO α background in WIMP window

Detailed surface background model, suggested a 'conventional' explanation to the excess of events seen by CRESST-II, see:
Construction highlights: acrylic vessel

RPT Colorado

University of Alberta, Edmonton
Underground bonding
Vacuum testing the steel sheel

Bonding lightguides to the acrylic vessel

Completed acrylic vessel – lightguide assembly
Reflector & PMT installation
Picture taken from the inside of the detector after the reflector and PMT installation

M. Kuźniak, PASCOS 2014
Time scale

- Some delay with respect to the plot: ~6 months
- Next installation steps:
 - Resurfacing
 - Wavelength shifter deposition
 - Cooldown
- Commissioning starts then
- Competitive limits after ~2 months of data taking

M. Kuźniak, PASCOS 2014
Single phase Ar limited by coherent scattering of atmospheric neutrinos

Superior PSD in Ar allows to get rid of contribution from elastic scattering of pp neutrinos on electrons.

Adapted from L.E. Strigari, New J. Phys. 11 (2009) 105011

- Our current focus on DEAP-3600
- But already starting to think about a competitive next generation detector
- Very attractive possibility for a precision mass measurement

(if a signal at $\sim 10^{-46}$ cm2 is seen)
WIMP mass sensitivity

- Technology can be scaled to very large target masses, > 100 tonnes or 10^{-48} cm^2 sensitivity
- Larger detector allows for better position reconstruction, which makes surface contamination easier to mitigate
- Relaxed targets on surface contamination significantly simplify many aspects of construction and assembly (compared to DEAP-3600)
- Large detector will require Depleted Argon

Chosen parameters:
- 44’ diam. water tank
- 24’ diam. Steel Shells
- 4400 8” HQE PMTs
- 12” acrylic shielding panels
- 17’ diam. 2” thick acrylic
- vessel with flanged lid
- 150 tonnes argon in AV (50 tonnes fiducial)

- Modest R&D underway
Within reach for 1-tonne detectors

Large detector can conclusively probe the allowed CMSSM parameter space and most of the NUHM allowed parameter space.

M. Kuźniak, PASCOS 2014
Summary

- ~1 TeV WIMPs favoured by the simplest and most widely considered models (cMSSM and NUHM). Within reach for the upcoming round of direct detection experiments.

- DEAP-3600 construction is nearly complete.

- Detector online later this year, with competitive sensitivity for WIMP masses >150 GeV.

- We have demonstrated sufficient control over surface backgrounds and excellent PSD in DEAP-1.

- Some conceptual effort on the next generation detector.

- In the single-phase technology, larger scale makes life much easier.

- Attractive way towards a precision WIMP mass measurement (if a WIMP signal is seen by 1 tonne scale experiments). Single-phase LAr is ideally suited for this purpose.

M. Kuźniak, PASCOS 2014
Stay tuned!
Backup
CMSSM parameter space

CMSSM, $\mu > 0$
Posterior pdf
Log Priors

inner contour: 1σ
outer contour: 2σ
dashed: KRS (2013)

ATLAS ($20 \text{ fb}^{-1} \sqrt{s} 8 \text{ TeV}$)

CMSSM, $\mu < 0$
Posterior pdf
Log Priors

inner contour: 1σ
outer contour: 2σ

ATLAS ($20 \text{ fb}^{-1} \sqrt{s} 8 \text{ TeV}$)

M. Kuźniak, PASCOS 2014
DEAP-1: Good understanding of surface backgrounds

- Find ^{214}Po “sticks” to wall

^{222}Rn
- 3.83 d
- 5480 keV
- 3.05 m

^{218}Po
- α
- 6002.4 keV
- 26.8 m

^{222}Rn:
- 120 µBq in DEAP-1

Compare for example:
- 360 µBq in EXO-200
 - [PRL 109 032505 (2012)]
Non-trivial effects due to surface roughness

- Coupled with surface contamination it can lead to tails at low energies
- It is impossible to account for surface roughness using simple tools such as SRIM
- Can be properly simulated using Geant4 with one of its common extensions:
 => physics list from example “TestEm7” in the standard distribution

- Possible explanation of the CRESST-II event excess at low energies

Geant4 + realistic surface + TestEm7