

Last results from DEAP-3600

Dr. Michela Lai on behalf of DEAP-3600 Collaboration

33 RENCONTRES DES BLOIS - 26 MAY 2022

DEAP

DEAP Collaboration

115 University of Sussex

33 RENCONTRES DES BLOIS - 26 MAY 2022

Laboratoires Nucléaires

The detector

- DEAP-3600 is the largest running liquid argon detector designed for the dark matter search
- 3279 ± 96 kg of Liquid Argon

- Density: 1.4 g/cm³

33 RENCONTRES DES BLOIS - 26 MAY 2022

Temperature: 86.8 K

Pressure < 0.946 bar

• Scintillation light yield in DEAP: 7.1 photoelectrons (PE)/keVee

Astroparticle Physics 108 (2019) 1-23

Advantages with Liquid argon

- High scintillation yield (40 ph/keV)
- Transparent to its own scintillation light
- Discrimination between nuclear recoils and electron recoils according to the prompt scintillation light
- ³⁹Ar beta decays allowed to model the pulse shape due to **scintillation and the detector response**

$$I_{LAr}(t) = \frac{R_s}{\tau_s} e^{-t/\tau_s} + \frac{1 - R_s - R_t}{\tau_{rec}(1 + t/\tau_{rec})^2} + \frac{R_t}{\tau_t} e^{-t/\tau_t}$$

$$\tau_s = 8.2ns$$

$$\tau_{rec} = 175.5ns$$

$$R_t = 0.71$$

$$\tau_t = 1445ns$$

$$R_s = 0.23$$

Pulse shape discrimination

• Four pulse shape discrimination parameters have been defined, based on different photon counting and test statistics

• At about 18 keV_{ee} and a nuclear recoil acceptance of 50 % a leakage probability of about 10⁻¹⁰ is reached

Backgrounds

- Electron recoil background fully modeled up to 10 MeV
- Measured ${}^{42}Ar/{}^{42}K$ activity = $40.4 \pm 5.9 \mu Bq/kg$

Phys. Rev. D 100, 072009 (2019)

33 RENCONTRES DES BLOIS - 26 MAY 2022

Surface alphas removed with fiducial cuts, r < 630 mm

- Neck alphas removed with:
- o Fprompt upper cut
- Early pulses in Gas Argon PMTs
- Charge fraction in top 2 PMT rings
- MVA selection cuts (ongoing)

Exclusion limits

- interaction are set.
- The next WIMP search, with about three more years of cross-sections.

³³ RENCONTRES DES BLOIS - 26 MAY 2022

Phys. Rev. D 100, 022004

Constrains on NREFT interactions...

• The results from previous analysis can be re-read in terms of **NREFT** operators

33 RENCONTRES DES BLOIS - 26 MAY 2022

Effective DM-proton cross-section $\sigma^p = \frac{(c_i^p \mu_p)^2}{(c_i^p \mu_p)^2}$

IV = Isovector coupling

XP = XenonPhobic coupling

$$\sigma_i^n = -\sigma_i^p$$

$$\sigma_i^n = -0.7\sigma_i^p$$

 $\sigma_i^n = \sigma_i^p$

... with non-standard halo

- GAIA and Sloan Digital Sky Survey recently observed inflating clumps and streams around our Galaxy
- Some dark matter might be into these substructures

$$\frac{dR}{dt} = N_T \frac{\rho}{m_{\chi}} \int_{v > v_{min}} f(\mathbf{v} + \mathbf{v}_{\mathbf{E}}(\mathbf{t})) \frac{d\sigma_T(E_R, v)}{dE_R} d^3 v$$

$$f_{SHM}(\vec{v}) = \frac{1}{\sqrt{2\pi\sigma}} exp\left(-\frac{v^2}{2\sigma^2}\right)$$

$$f_{DM}(\overrightarrow{v}) = (1 - \eta_{sub}) f_{SHM}^{gal}(\overrightarrow{v}) + \eta_{sub} f_{sub}^{gal}(\overrightarrow{v})$$

... with non-standard halo

- The exclusion limits are evaluated with these modified velocity distributions in the halo
- Streams and Infalling clumps (IC) are arranged in **groups**, according to their impact on the exclusion curves

Heavy dark matter

Expected in GUTs but cannot be produced with WIMPs freeze out mechanism.

Primordial black holes ($M \lesssim 5 \times 10^8 g$ **)** can produce heavy dark matter candidates ($m_{DM} \gtrsim 10^9 GeV$) by Hawking evaporation.

of N particles, χ_1

 sm

J. High Energ. Phys. 2019, 1 (2019).

For more details: https://arxiv.org/abs/2203.06508

33 RENCONTRES DES BLOIS - 26 MAY 2022

Ultra High energy cosmic rays, above $E \approx 5 \times 10^{10} GeV$ can result from the decay of very heavy dark matter particles, produced by oscillations of the inflaton, a scalar massive field $(m \approx 10^{13} GeV).$

Phys. Rev. D 59, 123006 (1999).

Thermally produced in a **secluded sector**, where DM is a degenerate state

 $\chi_i + SM \leftrightarrow \chi_{i+1} + SM \qquad \chi_N \to SM + SM$ These DM particles can reach Planck scale masses.

Multi-scattering search

At such **high masses**, constrains are limited by the dark matter abundance rather than the cross-section, so a **large detector is needed**

Experimentally allowed cross-sections are high enough to produce **multiple scatters** in the detector

Dark matter (DM) candidates above $\sigma_{\chi^{-n}} \cong 10^{-25} \text{ cm}^2$ and $m_{\chi} \gtrsim 10^{12} \text{ GeV}$ can reach underground detectors

Multi-scattering particle along a collinear track

Simulation of the signal

• The detector response is calibrated with (n, γ) lines from ²⁴¹AmBe source at (4.6 \pm 0.7) kHz up to 10 MeV_{ee}.

N_{peaks}: number of significant peaks on the discrete derivative w'(t) of the binned summed waveform.

Background below 10 MeV

- Single scatter events removed by asking $N_{peaks} > 1$
- Left backgrounds: **pile-up events**
- The number of pulses in a pile-up is given by N_{peaks}.

33 RENCONTRES DES BLOIS - 26 MAY 2022

Single scatter background already modeled

Assumed Poissonian statistics for the number of pulses in a pile-up Agreement between data and simulation within 5 % in two test dataset For each energy range it follows the selection cut in N_{peaks}

10⁶ 10⁵ 10⁴ 10²

10⁻⁵

Background above 10 MeV

- No calibration available
- simulations at very high cross-section candidates could not be performed due to computational limits.
- A conservative **acceptance of 35 %** assumed according to the time-of-flight across the inner vessel
- 17 muons per day in the water tank
- Removal of any event within [-10, 90]us from the muon veto trigger
- Upper selection cut at $\mathbf{F}_{prompt} < 0.05$ from the muon coincidence sideband

ROI	PE range	Energy [MeV]	$\mathrm{N_{peaks}^{min}}$	$\mathrm{F}_{\mathrm{prompt}}^{\mathrm{max}}$
1	4000 - 20000	0.5 - 2.9	7	0.10
2	20000 – 30000	2.9 – 4.4	5	0.10
3	30000 - 70000	4.4 - 10.4	4	0.10
4	$70000 - 4 \times 10^8$	10.4 - 60000	0	0.05

Unblinding!

The unblinding was performed for each single ROI.

November 4, 2016 - March 8, 2020

Excluded data:

- (3 ± 3) us/trigger for signal falling in two events
- 9 days to test the selection cuts
- 6 days from the muon coincidence sideband Two low level cuts applied
- < 5 % PE must be in the brightest channel, acceptance of 87 %
- < 5% PE must be in PMTs in gaseous argon, acceptance of 99 %

ROI	PE range	Energy [MeV]	N_{peaks}^{min}	\mathbf{F}_{1}^{i}
1	4000 - 20000	0.5 - 2.9	7	
2	20000 - 30000	2.9 - 4.4	5	
3	30000 - 70000	4.4 - 10.4	4	
4	$70000-4 \times 10^8$	10.4 – 60000	0	

Unblinding!

The unblinding was performed for **each single ROI**.

November 4, 2016 - March 8, 2020

Excluded data:

- (3 ± 3) us/trigger for signal falling in
- 9 days to test the selection cuts
- 6 days from the muon coincidence sideband Two low level cuts applied
- < 5 % PE must be in the brightest channel, acceptance of 87 %
- < 5% PE must be in PMTs in gaseous argon, acceptance of 99 %

ROI	PE range	Energy [MeV]	N_{peaks}^{min}	\mathbf{F}_{1}^{i}
1	4000-20000	0.5 - 2.9	7	
2	20000 - 30000	2.9 - 4.4	5	
3	30000 - 70000	4.4 - 10.4	4	
4	$70000-4 \times 10^8$	10.4 - 60000	0	

- Model 1: dark matter candidate opaque to the nucleus
- Limits on strongly interacting, composite dark matter candidates. $d\sigma_{T_{Y}} d\sigma_{n_{Y}} d\sigma_{n_{Y}}$

$$\frac{a\sigma_{T\chi}}{dE_R} = \frac{a\sigma_{n\chi}}{dE_R} |F_T(q)|^2$$

33 RENCONTRES DES BLOIS - 26 MAY 2022

• Model 2: nuclear dark matter models, with N_D nucleons, each with mass m_D and radius r_D,

$$\frac{d\sigma_{T\chi}}{dE_R} = N_D^2 \frac{d\sigma_{nD}}{dE_R} |F_T(q)|^2 A^4 |F_{\chi}(q)|^2$$
$$\frac{d\sigma_{T\chi}}{dE_R} = A^4 \frac{d\sigma_{n\chi}}{dE_R}$$

- Model 1: dark matter candidate opaque to the nucleus
- Limits on strongly interacting, composite dark matter candidates. $d\sigma_{T_{Y}} d\sigma_{n_{Y}} d\sigma_{n_{Y}}$

$$\frac{a\sigma_{T\chi}}{dE_R} = \frac{a\sigma_{n\chi}}{dE_R} |F_T(q)|^2$$

33 RENCONTRES DES BLOIS - 26 MAY 2022

• Model 2: nuclear dark matter models, with N_D nucleons, each with mass m_D and radius r_D,

$$\frac{d\sigma_{T\chi}}{dE_R} = N_D^2 \frac{d\sigma_{nD}}{dE_R} |F_T(q)|^2 A^4 |F_{\chi}(q)|^2$$
$$\frac{d\sigma_{T\chi}}{dE_R} = A^4 \frac{d\sigma_{n\chi}}{dE_R}$$

Most stringent exclusion limit to WIMPs at masses > 100 GeV in liquid argon

Most stringent exclusion limit to WIMPs at masses > 100 GeV in liquid argon

33 RENCONTRES DES BLOIS - 26 MAY 2022

Pulse shape of the signal carefully modeled

Best PSD discrimination in liquid argon

Most stringent exclusion limit to WIMPs at masses > 100 GeV in liquid argon

Re-analysis of the WIMP results with NREFT...

... and non-standard velocity distributions in the halo!

Best exclusion limit to xenonphobic candidates

33 RENCONTRES DES BLOIS - 26 MAY 2022

Pulse shape of the signal carefully modeled

Best PSD discrimination in liquid argon

Most stringent exclusion limit to WIMPs at masses > 100 GeV in liquid argon

Re-analysis of the WIMP results with NREFT...

... and non-standard velocity distributions in the halo!

Best exclusion limit to xenonphobic candidates

33 RENCONTRES DES BLOIS - 26 MAY 2022

Pulse shape of the signal carefully modeled

Best PSD discrimination in liquid argon

Unique sensitivity to heavy dark matter candidates up to Planck Scale masses

Most stringent exclusion limit to WIMPs at masses > 100 GeV in liquid argon

Re-analysis of the WIMP results with NREFT...

... and non-standard velocity distributions in the halo!

Best exclusion limit to xenonphobic candidates

33 RENCONTRES DES BLOIS - 26 MAY 2022

Pulse shape of the signal carefully modeled

Best PSD discrimination in liquid argon

Unique sensitivity to heavy dark matter candidates up to Planck Scale masses

New WIMP search: coming soon!

Backup

Dr. Michela Lai on behalf of **DEAP-3600** Collaboration

The detector

- 0 events found in any of the ROIs!
- Exclusion limits at 90 % C.L. set for any DM model predicting at least 2.3 events across all the ROIs.
- Expected number of event:

$$\mu_{s} = T \int d^{3}v \int dA \frac{\rho_{\chi}}{m_{\chi}} |v| f(v) \epsilon(v, \sigma_{T,\chi}, m_{\chi})$$

- Model 1: dark matter candidate opaque to the nucleus
- Scattering cross-section at q=0 corresponds to the geometric size of the DM
- Limits on strongly interacting, composite dark matter candidates.

- 0 events found in any of the ROIs!
- Exclusion limits at 90 % C.L. set for any DM model predicting at least 2.3 events across all the ROIs.
- Expected number of event:

$$\mu_{s} = T \int d^{3}v \int dA \frac{\rho_{\chi}}{m_{\chi}} |v| f(v) \epsilon(v, \sigma_{T,\chi}, m_{\chi})$$

- Model 1: dark matter candidate opaque to the nucleus
- Scattering cross-section at q=0 corresponds to the geometric size of the DM
- Limits on strongly interacting, composite dark matter candidates.

- No event was found in all the ROIs!
- Exclusion limits at 90 % C.L. set for any DM model predicting at least 2.3 events across all the ROIs.
- Expected number of event:

$$\mu_{s} = T \int d^{3}v \int dA \frac{\rho_{\chi}}{m_{\chi}} |v| f(v) \epsilon(v, \sigma_{T,\chi}, m_{\chi})$$

• Model 2: nuclear dark matter models, with N_D nucleons, each with mass m_D and radius r_D,

$$\frac{d\sigma_{T\chi}}{dE_R} = N_D^2 \frac{d\sigma_{nD}}{dE_R} |F_T(q)|^2 A^4 |F_{\chi}(q)|^2$$

• To keep s-wave approximation ($\sigma_{T\chi} < \sigma_{geo}$), for dark nuclei $R_D >> 1$ fm we can find potentials resulting in $|F_{\chi}(q)|^2 \approx 1$

$$\frac{d\sigma_{T\chi}}{dE_R} = N_D^2 \frac{d\sigma_{nD}}{dE_R} |F_T(q)|^2 A^4$$

Background sources

- Bulk alphas: energy fully deposited in LAr, much above WIMP **R**OI
- Surface alphas: most of the energy lost in TPB and/or acylic, giving a lower energy deposit in LAr. Might fall in WIMP ROI.
- **Fiducialization** volume cut at r < 630 mm

Background sources

- ²¹⁰ Po releases alphas in the acrylic of the flowguides
- Alphas scintillate in the LAr film on the flowguides
- Their light is **shadowed** by the flowguide geometry and might enter the WIMP ROI.

33 RENCONTRES DES BLOIS - 26 MAY 2022

1000 950 z [mm] 900 850 150 -100-50 50 100 150 x [mm] Inner flowguide (inner surface LAr) Inner flowguide (outer surface LAr) Piston ring Outer flowguide (inner surface LAr) **UV Scintillation** Phys. Rev. D 100, 022004

Rejection techniques:

- F_{prompt} upper cut
- Early pulses in Gas Argon PMTs
- Charge fraction in top 2 PMT rings
- Near future: **multivariate analysis** with high efficiency in vetoing neck alphas

Simulation of the signal

The dark matter particle is generated at 80 km from Earth Surface. It is propagated via Monte Carlo method through the overburden.

