Latest Results from DEAP-3600

Joseph McLaughlin On Behalf of the DEAP Collaboration ICHEP 2022 Bologna, Italy

ROYAL

OF LONDON

HOLLOWAY

UNIVERSITY

Contents

- Overview of the DEAP-3600 Experiment
- Precision Measurements
- WIMP Searches
- Beyond WIMPs
- Outlook

Other atoms in the track of the recoiling argon becomes **excited** or **ionized**

Overview of DEAP-3600: Pulse Shape Discrimination

Nuclear Recoils

Scattering directly with argon nuclei; excimers mostly populate the *singlet state*, relax quickly. Induced by:

- Neutrons
- Alphas
- WIMPs

Electronic Recoils

Scattering with argon atomic electrons, ionizing argon; excimers tend to populate *triplet state*, relax slowly. Induced by:

- Betas (especially ³⁹Ar at ~3 kHz)
- Gammas

Overview of DEAP-3600: Pulse Shape Discrimination

Nuclear Recoils

Scattering directly with argon nuclei; excimers mostly populate the *singlet state*, relax quickly. Induced by:

- Neutrons
- Alphas
- WIMPs

Electronic Recoils

Scattering with argon atomic electrons, ionizing argon; excimers tend to populate *triplet state*, relax slowly. Induced by:

- Betas (especially ³⁹Ar at ~3 kHz)
- Gammas

Overview of DEAP-3600: Pulse Shape Discrimination

Nuclear Recoils

Scattering directly with argon nuclei; excimers mostly populate the *singlet state*, relax quickly. Induced by:

- Neutrons
- Alphas
- WIMPs

Electronic Recoils

Scattering with argon atomic electrons, ionizing argon; excimers tend to populate *triplet state*, relax slowly. Induced by:

- Betas (especially ³⁹Ar at ~3 kHz)
- Gammas

Precision Measurements: Liquid Argon Pulse Shape

- Characterized the LAr pulse shape, accounting for detector geometry, and contributions from TPB, PMT afterpulsing, double/late pulsing, and stray light
- Pulse shape includes known singlet & triplet components, also *intermediate* component

• Detailed pulse shape modelling allows for ability to separate scintillation from PMT artifacts; i.e. PMT afterpulsing

ROYAL

HOLLOWAY

• Detailed pulse shape modelling allows for ability to separate scintillation from PMT artifacts; i.e. PMT afterpulsing

ROYAL

HOLLOWAY

• Detailed pulse shape modelling allows for ability to separate scintillation from PMT artifacts; i.e. PMT afterpulsing

ROYAL

HOLLOWAY

DEAP Collaboration, Eur. Phys. J. C 81, 823 (2021)

• PSD model tested with both energy estimators: total integrated charge & with afterpulsing removal

- PSD model tested with both energy estimators: total integrated charge & with afterpulsing removal
- ³⁹Ar leakage is reduced by an order magnitude with afterpulsing removal compared to total charge integration

- PSD model tested with both energy estimators: total integrated charge & with afterpulsing removal
- ³⁹Ar leakage is reduced by an order magnitude with afterpulsing removal compared to total charge integration
- Result: world leading PSD! 10⁻¹⁰ leakage fraction of ³⁹Ar for 50% NR acceptance at 110 PE (117.5 keVee)

Precision Measurements: Electromagnetic Backgrounds

DEAP Collaboration, Phys. Rev. D 100, 072009

23

- Comprehensive electromagnetic backgrounds model fit to data with BAT (Bayesian Analysis Toolkit)
- Considered components include sources located in the LAr bulk all the way out to the stainless steel shell

joseph.mclaughlin.2018@live.rhul.ac.uk

Precision Measurements: Electromagnetic Backgrounds

- ROYAL HOLLOWAY UNIVERSITY OF LONDON
- ⁴²Ar betas are source of background for DarkSide-20k, GERDA, LEGEND—previously measurements of its specific activity are in tension, have large uncertainties
- DEAP measures ⁴²Ar activity via ⁴²K beta decay: $A = 40.4 \pm 5.9 \mu Bq/kg$

WIMP Searches: **DEAP Standard Analysis**

• DEAP's 231 live-day exposure with region of interest (ROI), fiducial volume (FV), and event selection cuts had zero background events

- DEAP's 231 live-day exposure with region of interest (ROI), fiducial volume (FV), and event selection cuts had zero background events
- Improved background model and machine learning algorithms will allow us to expand ROI and FV, as well as ease event selection cuts

Define a Likelihood Function

$$\mathscr{L}(\mathbf{x} | \boldsymbol{\sigma}, \boldsymbol{\theta}) = \mathscr{L}_{\text{PDFs}}(\mathbf{x} | \boldsymbol{\sigma}, \boldsymbol{\theta}) \cdot \mathscr{L}_{\text{Con}}(\boldsymbol{\theta}) \cdot \mathscr{L}_{\text{SB}}(\boldsymbol{\theta})$$

Set of observed data points

WIMP-nucleon elastic scattering cross-section

Set of nuisance parameters (systematics)

Define a Likelihood Function

$$\mathscr{L}(\mathbf{x} | \boldsymbol{\sigma}, \boldsymbol{\theta}) = \mathscr{L}_{\text{PDFs}}(\mathbf{x} | \boldsymbol{\sigma}, \boldsymbol{\theta}) \cdot \mathscr{L}_{\text{Con}}(\boldsymbol{\theta}) \cdot \mathscr{L}_{\text{SB}}(\boldsymbol{\theta})$$

Set of observed data points

WIMP-nucleon elastic scattering cross-section

Set of nuisance parameters (systematics)

DEAP sensitivity from 231-day exposure can be improved with PLR and Machine Learning

WIMP Searches: Nonrelativistic Effective Field Theory

All assuming a scalar WIMPnucleon coupling; i.e. coherent scattering with entire nucleus

A more general non-relativistic effective field theory includes velocity and spin dependent mechanisms

\mathcal{O}_1	$1_{\chi}1_N$	Ø ₁₁	$iS_{\chi} \cdot \frac{\overrightarrow{q}}{m_N}$
Ø ₃	$iS_N \cdot \left(\frac{\overrightarrow{q}}{m_N} \times \overrightarrow{v}_{\perp}\right)$	Ø ₁₂	$\overrightarrow{v}_{\perp} \cdot \left(S_{\chi} \times S_N \right)$
\mathcal{O}_5	$iS_{\chi} \cdot \left(\frac{\overrightarrow{q}}{m_N} \times \overrightarrow{v}_{\perp}\right)$	Ø ₁₅	$-\left(s_{\chi}\cdot\frac{\overrightarrow{q}}{m_N}\right)\left[\left(S_N\times\overrightarrow{v}_{\perp}\right)\cdot\frac{\overrightarrow{q}}{m_N}\right]$
\mathcal{O}_8	$S_{\chi} \cdot \overrightarrow{v}_{\perp}$		

WIMP Searches: Nonrelativistic Effective Field Theory

 Interactions in generalized NR-EFT explored with various extensions of standard halo model; substructures like S1 retrograde stellar stream and *Gaia* Sausage considered

Beyond WIMPs: Planck Scale Dark Matter

- Dark matter with Planck scale mass is theoretically well motivated; could have much higher cross-sections than WIMPs and not yet be excluded
- Higher cross-sections \rightarrow multiply scattering DM, which is usually cut in WIMP searches

Beyond WIMPs: Planck Scale Dark Matter

In the Pipeline

³⁹Ar Specific Activity and Half-Life

- Dedicated papers for ³⁹Ar specific activity and half-life measurements in DEAP are currently under collaboration review
- Extra slides available for those interested!

5.5 MeV Solar Axion Search

- Search for axions produced in sun's core via the reaction: $p + {}^{2}H \rightarrow {}^{3}He + a$
- Requires precise knowledge of EM backgrounds in MeV range

⁸B Neutrino Absorption

- DEAP has an active search for inverse beta decay of ⁴⁰Ar induced by ⁸B solar neutrinos via $\nu_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$
- Currently working on background model for this signal, understanding detector response at high energies (4–18 MeV)

Muon Flux at SNOLAB

- Dedicated group on DEAP working on muon veto instrumentation paper as well as a muon flux measurement at SNOLAB
- Currently validating MC model, developing event selection criteria to eliminate instrumental events, studying systematics

Conclusion

- Precise LAr pulse shape measurements contribute to excellent background rejection
 - World leading PSD!
- Competitive dark matter searches spanning 17 orders of magnitude in mass
 - 100 GeV WIMP search extended with NR-EFT
 - Previously unprobed Planck Scale DM parameter space excluded at 10¹⁹ GeV
- Ongoing analyses aimed at improving sensitivity to WIMPs and other new physics
 - PLR and Machine Learning analyses are well along their way!

DEAP Collaboration

ROYAL HOLLOWAY UNIVERSITY OF LONDON

Extra Slides: **SNOLAB**

Extra Slides: ³⁹Ar Specific Activity and Half-Life

Extra Slides: ³⁹Ar Specific Activity and Half-Life

- Dedicated papers for ³⁹Ar specific activity and half-life in DEAP are currently under collaboration review
- Iow energy beta spectrum model accounts for ³⁹Ar and ⁸⁵Kr betas, low energy ER band backgrounds, pileup with various other sources
- Drifting of light yield also included in systematic analysis; stable to within \sim 0.3 PE/keV_{ee}

Extra Slides: Profile Likelihood Ratio

joseph.mclaughlin.2018@live.rhul.ac.uk

Extra Slides: Xenonphobic WIMPs

 m_{γ} [GeV/c²]

P. Adhikari, et al. Phys. Rev. D 102, 082001

- Isospin-violating interactions also considered in NR-EFT framework
- xenonphobic (XP) interactions cover a range of isospinviolating models
- DEAP sets world
 leading limit on
 these isospin violating interactions

joseph.mclaughlin.2018@live.rhul.ac.uk

Distinguishable from pileup

- Higher cross-sections \rightarrow multiply scattering DM, which is usually cut in WIMP searches
- Dark matter with Planck scale mass is theoretically well motivated; could have much higher cross-sections than WIMPs and not yet be excluded
- Extra Slides: Planck Scale Dark Matter

Extra Slides: Planck Scale Dark Matter

Extra Slides: Planck Scale Dark Matter

- Model I considers the case where:
- Model II considers the case where:

$$\frac{d\sigma_{\mathrm{T}\chi}}{dE_R} = \frac{d\sigma_{\mathrm{n}\chi}}{dE_R} |F_{\mathrm{T}}(q)|^2$$
$$\frac{d\sigma_{\mathrm{T}\chi}}{dE_R} \approx \frac{d\sigma_{\mathrm{n}\chi}}{dE_R} A^4 |F_{\mathrm{T}}(q)|^2$$

DEAP sets new world leading constraints for Planck Scale DM in both scenarios

