Understanding Alpha Background in DEAP-3600

Carl Rethmeier

2019 CAP Congress

DEAP-3600 Collaboration

2019-06-03

DEAP-3600

Argon-filled acrylic vessel enclosed in steel shell

- Main goal is to search for WIMP (Weakly Interacting Massive Particle) dark matter
- Located 2 km underground at SNOLAB
 - Overhead rock blocks solar and cosmic backgrounds
- Detector is a spherical acrylic vessel filled with 3.3 tonnes of liquid argon (LAr)
- Acrylic vessel encased within steel shell and placed in a water tank

How We See the Signal

- WIMP scatters off argon atom
- Recoil produces UV scintillation light
- UV light is converted to visible when it hits TPB on detector surface
- Visible light can pass through acrylic and enter PMTs
- Light produces Photo-Electron (PE) in PMT
- PE triggers an avalanche of charge, which is proportional to total light entering PMT

Pulse Shape Discrimination (PSD)

- Argon has long-lived triplet (1600 ns) and shortlived singlet (6.7 ns) excited states
- Electromagnetic interactions produce more triplets vs singlets than nuclear interactions

Backgrounds

- Betas and gammas -
 - Ar39 is main source
 - Excluded with PSD
- Neutrons
 - Detector shielded against external neutrons
 - Neutrons produce gammas that allow us to count them
- Alpha decays
 - We'll talk about these

PMT Saturation and Digitizer Clipping

- PMT pulses can get clipped and saturated
- This occurs when a high amount of light enters a PMT
- "Clipping" refers to pulses that are cut off when digitizers reaches gain limit
- "Saturation" refers to a non-linear PMT response due to high total charge in PMT

Why We Care about the Alpha Background

Surface Events

TPB

Acrylic

LAr Events

- If their energy gets partially absorbed, they could leak into the WIMP region of interest
- So we need to know how much of each isotope we have and where they are located

We have used 3 methods to determine the activity of radon-220 and radon-222 in the LAr

- The methods are based on counting the number of alpha decays the following ways:
 - Cut and count
 - Time-coincidence tagging
 - Multi-component spectrum fit

Cutting and Counting

- Can locate populations of alpha decays with known energies
- Make cuts along the minima between them
- Get rough estimate of the number of alpha decays
- Very difficult to assign uncertainties
- Events can leak out of or into these boxes

Time Coincidence Tagging

Advantages of Tagging

- 1.5 ms window for Po214 tagging captures 99.8% of decays
- Pileup of Po214 with its parent (Bi214) removes 5.5% of Po214 tags
- Other Po214 tag cuts are ~87% efficient
- Rn220 tagging with Po216 is 90.8% efficient based on 0.5 s window (0.209 ± 0.003 s lifetime)

Selected Po214 events with degraded energy (red dots to the left of Po214 peak) and fitted decay time _____

Multi-Component Fit

- Simulate alpha decays within the detector and fit the resulting model to the data
- MC is not perfect
 - But it's close enough to perform a fit

Energy Correction

Select populations using box cuts

Fit line to each population

Plot the slopes and intercepts of the lines on a graph vs keV and fit a polynomial to the graph

Numerically solve calibration function for each event in dataset

$$F_{prompt} = PE \times slope(keV) + intercept(keV)$$

Results

- Able to fit out almost all alpha decays in liquid argon
- Also performed separate fit of Po210 components on detector surface

Component	Activity / Rate
²²² Rn LAr	$(0.153\pm 0.005)\mu{\rm Bq/kg}$
²¹⁸ Po LAr	$(0.159\pm 0.005)\mu Bq/kg$
²¹⁴ Po LAr	$(0.153\pm 0.005)\mu{\rm Bq/kg}$
²¹⁴ Po TPB surface	$< 5.0\mu Bq/m^2$
²²⁰ Rn LAr	$(4.3\pm1.0)\mathrm{nBq/kg}$
²¹⁶ Po LAr	$(4.5\pm0.4)\mathrm{nBq/kg}$
²¹² Bi LAr	$< 5.6\mathrm{nBq/kg}$
²¹² Po LAr	$(3.4\pm1.1)\mathrm{nBq/kg}$
$^{210}\mathrm{Po}$ TPB & AV surface	$(0.26\pm 0.02){\rm mBq/m^2}$
210 Po AV (bulk)	$(2.82 \pm 0.05) \mathrm{mBg}$

Summary

- Alpha backgrounds have been modelled and fit out
- Results show that DEAP LAr has the lowest specific radon activity of the noble liquid based dark matter detectors
- Overall DEAP result is the most sensitive of any liquid argon experiment to date

Experiment	Activity/Rate	Target	Reference
DEAP-3600	0.15 µBq/kg	LAr	
DarkSide-50	1.74 µBq/kg	LAr	C. J. Stanford, Ph.D. thesis, Princeton University (2017)
PandaX-II	6.6 µBq/kg	LXe	Phys. Rev. D 93, 122009 (2016)
LUX	66 µHz/kg	LXe	Physics Procedia 61 (2015) 658 – 665
XENON-1T	10 µBq/kg	LXe	XeSat2017 talk [link]

Backup

Neck Alpha Decays

- Alpha decays in the neck were a significant background
- We were able to cut out these events
- Made model-based prediction of expected number of events in ROI

Component	Activity / Rate
²¹⁰ Po inner FG, IS	$(14.1\pm1.3)\mu\mathrm{Hz}$
$^{210}\mathrm{Po}$ inner FG, OS	$(16.8\pm1.4)\mu\mathrm{Hz}$
$^{210}\mathrm{Po}$ outer FG, IS	$(22.7\pm1.6)\mu\mathrm{Hz}$

800

600

400

200

-200

-400

-600

-800

1000

6000

Reconstructed z [mm]

500 1000 1500 2000 2500 3000 3500 4000 Photoelectrons detected

0

2000

Data

Background

Piston ring

3000

Inner flowguide, inner surface (IFG-IS)

Inner flowguide, outer surface (IFG-OS)

Outer flowguide, inner surface (OFG-IS)

4000

5000

Photoelectrons detected

60

40

20

0

1000

4000 5000

Sample region

2000 3000

Background

Photoelectrons detected