

Dark-matter Experiment using Argon Pulse Shape Discrimination

Fabrice Retière on behalf of the DEAP collaboration

DEAP-3600 concept

□ 3.6 tonnes of liquid Argon

- Enclosed in 85 cm radius acrylic ball
- o 1 tonne fiducial
 - Excluding surface events

□ Scintillation only

- Aka single phase
- Light viewed by 255
 photo-multiplier tubes

Neutron background mitigation

3

Acrylic work completed

Acrylic ball and light guide bars manufacturing by Reynolds Polymer

> Radiopurity control at each manufacturing steps

- Stub machining at U. Alberta
- Light guide machining at TRIUMF
- Light guide bonding underground at SNOLAB

More shielding work in progress

Steel shell in water tank

DE

IUMF

Current status

Light guide with reflectors

PMT and filler block assembly starting next week

Pulse shape discrimination concept

Expected PSD performances

LAr scintillation to visible light TPB deposition

Coat inside of acrylic vessel with 1µm of TPB **TPB** shifts Argon 128nm light to blue light **Deposition** after resurfacing Source developed at Queens U. Tested on 20" vessel

Radon Decay in LAr yields energy >> WIMP interaction

UMF

Main issue Rn daughter decaying on surface

Solutions:

- Minimize radon emanation with filters and a trap
- AV resurfacing: shave a mm off the surface

Projected backgrounds

Assuming 8PE per keV

Background	Rate/count	Mitigation
Neutron In 1t LAr	< 2 pBq/kg < 0.06 count/year	Shielding: 6000 mwe (SNOLAB), Active water shield, light guides and filler blocks Material selection
β & γ In 1t LAr	< 2 pBq/kg < 0.06 count/year	Pulse shape discrimination Material selection (for γ)
Radon In 1t LAr	< 1.4 nBq/kg < 44 count/year*	Material selection, SAES getter, cold charcoal radon trap * High energy events, not in ROI
Surface α In 1t LAr	< 0.2 mBq/m² < 0.6 count/year	Material selection (acrylic), sanding of AV (1mm removal), fiducialization.

Total of <0.6 events in ROI in 3 years for a spin-independent WIMP-nucleon cross section sensitivity of 10^{-46} cm² at 100GeV.

Other systems in place

DEA

A triggering challenge

Lots of ³⁹Ar

- 3.6 kHz expected in full volume
- Everything else expected < mHz

Two-tier online selection scheme

FPGA-based decision using
 22 digitized analog sums

Low energy window

Online charge/time (Q/t)
 calculation & energy +
 Fprompt calculation

Separate in 5 regions

Offline analysis using using waveform fragments and Q/t

A calibration challenge

AmBe

No internal sources used to avoid contamination

• Main calibration tool ³⁹Ar

Sources in tubes outside steel shells need very hot sources to penetrate shielding

- 74MBq AmBe source for neutrons
 > 0.05Hz tagged neutron interactions
 0.37MBq ²²Na for gammas
 - ➢ 120 Hz tagged gamma interactions

Optical calibration

First physics data in 2014 ...Stay tuned

Fondation canadienne pour l'innovation