

In-situ Surface Contamination Removal and Cooldown Process of the DEAP-3600 Experiment

Pietro Giampa Queen's University

7th-September-2015

DEAP-3600

DEAP-3600 Collaboration

2/11

Pietro Giampa

ROYAL

HOLLOWAY

VERSIT **OF LONDON**

Outlook

- Introduction
- The Resurfacer
 - Motivation
 - Design
 - Operation
- Cool-Down Process
 - Challenges
 - Hardware
- Conclusions

Pietro Giampa

Pietro Giampa

Introduction

- First ton scale Dark Matter detector to complete construction.
- Single Phase LAr, target contained within an acrylic vessel (AV).
- 255 Hamamatsu R5912 HQE PMTs 8".
- Acrylic light-guides (LG) and Filler Blocks (FB) provide neutron shielding.
- Inner detector sealed inside a Stainless Steel vessel, which is mounted with 48 veto tubes.
- 402 m² Ultra-pure Water (UPW) shielding tank.
- Pulse-Shape Discriminator (PSD), strongest weapon.
- Sensitivity of 10⁻⁴⁶ cm² (SI) for 100 GeV WIMP.

4/11

 10^{2}

WIMP mass (GeV)

 10^{3}

07-09-2015

10

DEAP-3600

The Resurfacer : Motivation

07-09-2015

Pietro Giampa

The Resurfacer : Design

Pietro Giampa

6/11

DEAP-3600

The Resurfacer : Design

solid edge academic coi

Pietro Giampa

The Resurfacer : Operation

Resurfacer System:

- 1. Fluids Section: A series of pumps deliver and extract degassed UPW to and from the AV. Extracted UPW goes through filters that collect the removed acrylic.
- 2. Mechanical Section: Includes the rotating coupling connection at top that allows to maintain fluids and electrical connections while keeping vacuum seal.
- 3. Purge Gas Section: AV is kept at 3 psig positive pressure with ultra-purified N2 gas (0.039 mBq/m3).

Operation:

- Successfully ran the Resurfacer for over 200 hours.
- Removed 500 microns of acrylic from the most inner surface of the AV.
- Inner AV surface contaminations reduced by a factor of 2000.
- AV was never exposed to lab air during and after operation.

Spherical representation of the LVDT position transducer readout. Right is the AV north hemisphere, Left is the AV south hemisphere

Pietro Giampa

Cool-Down Process : Challenges

Goal - From AV at room temperature and in a vacuum state, to AV filled with LAr at 87 °K.

Challenges - The cool-down rate needs to be set so that it would: reduce thermal inducted stress from local and time variations in temperatures within the acrylic and avoid Argon freezing.

- The detector will be cooled at low pressure (10 psia), via small pressure increments (0.1 psig) to ensure safety. Reduce stress on the acrylic and optimize uniformity.
- With a cooling power that will never exceed 1 KW, the cool-down process is projected to be completed within 2 weeks.
- Heat transfer in the process was carefully studied and characterized (including MC model). Three main contributions:
 - 1. Heat Transfer between cooling hardware and the Ar gas.
 - 2. Heat transfer between the AV surface and the Ar gas.
 - 3. Heat transfer through the acrylic.

Saturation Curves for LN2 and AR

Pietro Giampa

Cool-Down Process : Hardware

- 300 W Cooling-coil. The Coil will be filled/cycled with LN2 (87 K).
- Cooling-coil + process system were fully tested in May 2014. Tests showed that we can achieve the required cooling target.
- Specifically designed acrylic flow-guides mounted at the bottom of the coil to guide the Argon into the AV.
- Multiple temperatures sensors spread across the detector, placed at different radial distances along LGs.

AccuN

Pietro Giampa

10/11

Conclusions

DEAP-3600:

- Construction completed.
- DAQ and Process System commissioned.
- Advanced PMTs characterization.
- Performed optical calibration with multiple sources (optical-fibre injections, Laserball).

Resurfacer:

- Successfully ran the resurfacer (full system) for over 200 hours.
- Removed acrylic calculated with multiple measurements. Estimated 500 microns removed.
- Inner AV Surface contaminations reduced by a factor of 2000.

Cool-down Process:

- Methodically studied all possible failure modes.
- Full cooling system commissioned, test run indicates that the cooling system can achieve required cooling power.
- Cool-down process expected to be completed within 2 weeks.

Pietro Giampa

Back-Up

The Resurfacer : Purge Gas System

- Purifies boil off nitrogen with a 50g activated charcoal trap.
- Designed so that the internal dewar pressure creates flow through the Rn trap.
- U.L. of 1 mBq of 222Rn inside the AV.
- Generates 0.039 mBq/m3 of Purge Ultra-Purified N2 Gas.
- Purge maintained at a flow of 9 L/m, to balance the in/out of UPW.
- Pressure maintained with a (MKS-640) auto pressure control valve (3 psig).
- Not just for the AV, but used to ensure cleanliness in all other active volumes.

http://www.sciencedirect.com/science/article/pii/S0168900204023356

Pietro Giampa

DEAP-3600

The Resurfacer : Sanding Arms Efficiency

Efficiency Studies :

- Measured ex-situ in test set-ups both at Queen's University and at SNOLAB.
- Sanding efficiency measured for each individual arm (North and South).
- Used 3 different methods: measured the sanded acrylic from holes located on the acrylic test plates, measured motor performance on a stand-alone set-up, and measured the collected removed acrylic with a series of filters.
- North sanding efficiency 8.3 g/hr.
- South sanding efficiency 9.3 g/hr.

Pietro Giampa

Cool-Down Process : Heat Transfer

Heat Transfer between cooling hardware and injected Argon gas.

$$Q_{coil} \propto \frac{k_{Ar}^{0.75} P^{0.5} (\Delta T)^{1.25}}{\mu^{0.25} T^{0.75}}$$

Heat Transfer between AV surface and the injected Argon Gas.

$$Q_{ac} = 5.38k_{Ar}(2 + 43.5(\frac{P^2\Delta T}{T_{Ar}^3k_{Ar}\mu})^{0.25}\Delta T$$

Heat Transfer through the acrylic.

$$Q_{solid} = 4\pi k_{ac} r_1 r_2 \left(\frac{T_1 - T_2}{r_1 - r_2}\right)$$

Pietro Giampa

Cool-Down Process : MC Model

Tested the MC model with the temperatures sensors data from the blackout of the AV.

