

DEAP-3600 Dark Matter Search at SNOLAB: Overview, Status and Future

M. Kuźniak Queen's University, Kingston ON, Canada (for the DEAP collaboration)

University of Alberta

D. Grant, P. Gorel, **A. Hallin**, J. Tang, J. Soukup, C. Ng, B.Beltran, K. Olsen, R. Chouinard, T. McElroy, S. Crothers, S. Liu, P. Davis, and A. Viangreiro

Carleton University

K. Graham, C. Ouellet, K. Brown

Queen's University

M. Boulay, B. Cai, B. Broerman, D. Bearse, K. Dering, **M. Chen**, S. Florian, R. Gagnon, V.V. Golovko, P. Harvey, M. Kuzniak, J.J. Lidgard, **A. McDonald**, C. Nantais, **A.J. Noble**, E. O'Dwyer, P. Pasuthip, T. Pollmann, L. Veloce, **W. Rau**, T. Sonley, P. Skensved, M. Ward

SNOLAB/Laurentian

B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, M. Batygov

SNOLAB

I. Lawson, K. McFarlane, P. Liimatainen, O. Li, E. Vazquez Jauregui

TRIUMF

F. Retiere, Alex Muir, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, C. Ohlmann, K. Olchanski , V. Strickland

Rutherford Appleton Laboratory P. Majewski, Raj Shah

Royal Holloway University of London

J. Monroe, J. Walding, A. Butcher

University of Sussex

Simon Peeters, Glenn Shayer

13-2-27

M. Kuźniak (Snowmass Cosmic Frontier Workshop)

Canada

UK

Liquid argon as a robust and scalable dark matter target

- Well-separated singlet and triplet lifetimes in argon allow for good pulse-shape discrimination (PSD) of β/γ's using only scintillation time information
- PSD to 10⁻⁸ demonstrated with DEAP-1 (Astroparticle Physics 25, 179 (2006) and arXiv:0904.2930, analysis of extended dataset to be published)
- For DEAP-3600 projected to 10⁻¹⁰ at 15 keVee
- Very large target masses possible, since no absorption of UV scintillation photons in argon, and no e-drift requirements.
- 1000 kg argon target allows 10⁻⁴⁶ cm² sensitivity (SI) with ~15 keVee (60 keVr) threshold, 3-year run

Background targets

Background	Target
Radon in argon	< 1.4 nBq/kg
Surface α 's (tolerance using conservative pos. resolution)	< 0.2 μBq/m2
Surface α 's (tolerance using ML position resolution)	< 100 µBq/m2
Neutrons (all sources, in fiducial volume)	< 2 pBq/kg
Bg events, dominated by 39Ar	< 2 pBq/kg
Total Backgrounds (3 Tonne-year in fiducial volume and Region of Interest)	< 0.6 events

Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector

P.-A. Amaudruzⁱ, M. Batygov^c, B. Beltran^a, K. Boudjemline^b, M.G. Boulay^g, B. Cai^g, T. Caldwell^f, M. Chen^g, R. Chouinard^a, B.T. Cleveland^c, D. Contreras^h, K. Dering^g, F. Duncan^c, R. Ford^h, R. Gagnon^g, F. Giuliani^d, M. Gold^d, V.V. Golovko^{g,1}, P. Gorel^a,
K. Graham^b, D.R. Grant^a, R. Hakobyan^a, A.L. Hallin^a, P. Harvey^g, C. Hearns^g, C.J. Jillings^c, M. Kuźniak^g, I. Lawson^h, O. Li^h, J. Lidgard^g, P. Liimatainen^h, W.H. Lippincott^{j,2}, R. Mathew^g, A.B. McDonald^g, T. McElroy^a, K. McFarlane^h, D. McKinsey^j, A. Muirⁱ, C. Nantais^g,
K. Nicolics^g, J. Nikkel^j, T. Noble^g, E. O'Dwyer^g, K.S. Olsen^a, C. Ouellet^b, P. Pasuthip^g, T. Pollmann^{g,3,*}, W. Rau^g, F. Retiereⁱ, M. Ronquest^e,
P. Skensved^g, T. Sonley^g, E. Vázquez Jáuregui^h, L. Veloce^g, M. Ward^g</sup>

arXiv:1211.0909v1 [astro-ph.IM] 5 Nov 2012

Low-energy spectrum well-described by ^{222}Rn in argon, normalized to high-energy α -rates.

Gap between 15 keVee and 40 keVee for DEAP-3600.

By-product:

"Surface roughness interpretation of CRESST-II result"

Astropart. Phys. 36, 77 (2012)

In DEAP-3600 surface background better discriminated with fiducialization

DEAP-3600 neutron backgrounds

- Dominated by (alpha, n) neutrons from PMT glass (Hamamatsu R5912 HQE)
- Extensive Geant4 simulations to set the purity targets for U/Th and ²¹⁰Pb
- Quality assurance and assay campaign to validate the material purity and limit exposure to Rn

	# of neutrons (produced in 3 years)	Events in ROI (3 years)
Acrylic vessel	<44 (Ge g-assay)	<0.096
Light guides	<127 (Ge g-assay)	<0.015
Filler blocks	<173 (Ge g-assay)	<0.034
PMTs	2.6x105	0.140
PMT mounts	7565	0. 010
Rn emanation	<44	<0.081
Rn deposition (3 months construction)	38	0.010
Other sources		0.04
Total	<2.7x105	<0.35

DEAP-3600

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides + PE shielding provide neutron moderation

Detector in 8 m water shield at SNOLAB

9

13-2-27

м. кизпак (Snowmass Cosmic Frontier Workshop)

Construction highlights

Water shield tank

(Snowmass

AV Fabrication (RPT and University of Alberta)

Underground bonding and machining

Cooldown scheduled for January 2014

- Remaining construction milestones:
 - LG bonding
 - PMT installation
 - Resurfacing
 - TPB deposition
- Cooldown: January 2014
- Followed by a couple of months for commissioning

Thinking about future scale-up

M. Kuźniak (Snowmass Cosmic Frontier Workshop)

WIMP mass sensitivity

- Technology can be scaled to very large target masses, > 100 tonnes or 10⁻⁴⁸ cm² sensitivity
- Larger detector allows for better position reconstruction
- This makes surface contamination easier to mitigate
- Relaxed targets on surface contamination significantly simplify many aspects of construction and assembly (compared to DEAP-3600)
- Large detector will require Depleted
 Argon

Summary

- DEAP-3600 construction is progressing rapidly
- Detector online early next year, with competitive sensitivity for WIMP masses >150 GeV
- We have demonstrated sufficient control over surface backgrounds in DEAP-1

- Some conceptual effort on the next generation detector
- In the single-phase technology, larger scale makes life much easier
- Potentially, very attractive way towards a precision measurement (if a WIMP signal is seen by 1 tonne scale experiments)