DEAP underground in Canada

Ben Smith for the DEAP-3600 collaboration SUSY 2015 25th August 2015

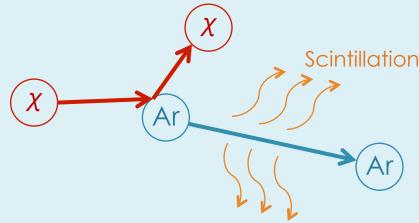
- Principle and detector design
- Construction progress
- > Commissioning
- Sensitivity and outlook

UMF Ben Smith - DEAP underground in Canada

DEAP-3600

- Searching for WIMPs
- Based at SNOLAB in Sudbury, Ontario
- Collaborators from CAN, UK and MEX

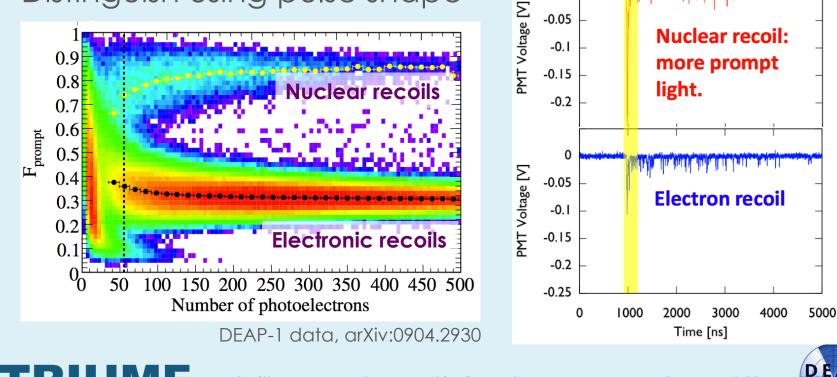
University of Sussex



UNF Ben Smith - DEAP underground in Canada

Detection principle – scintillation

- WIMP scatters off argon nucleus
- Recoil creates excited Ar₂ dimers
- Dimer decay produces UV scintillation light
 - Singlet and triplet states have different lifetimes (7ns / 1500ns)

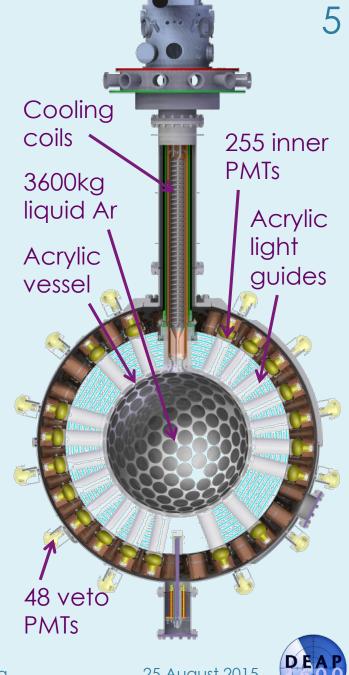

Ben Smith - DEAP underground in Canada

Pulse shape discrimination

- WIMP: nuclear recoil. β decay: electron recoil
- Nuclear recoils create more singlet states more prompt light!
- Distinguish using pulse shape

0.05

0


Ben Smith - DEAP underground in Canada

Detector design

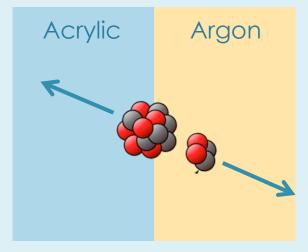
- 3600kg LAr, 1000kg fiducial
- Acrylic vessel 85cm radius
- Surrounded by water shield

- 2km underground in active nickel mine
 - "A day at SNOLAB" highly recommended! https://goo.gl/mgxwfi

UMF Ben Smith - DEAP underground in Canada

Construction progress

Recent milestones

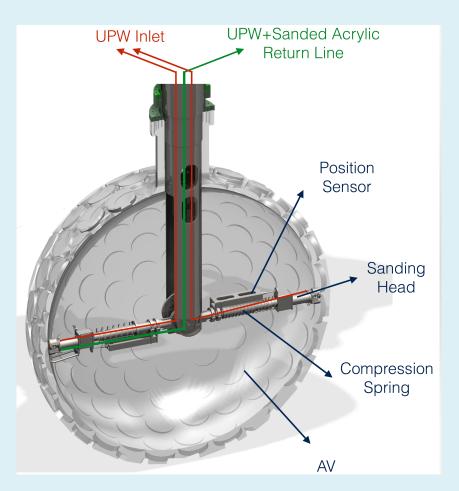

- Acrylic Vessel completed Nov 2013
- Inner detector instrumented Jun 2014
- AV resurfacing complete Nov 2014
- Steel shell and veto PMTs Apr 2015
- Wavelength-shifter deposited Jun 2015
- Water tank completed Jul 2015
- Laserball **calibration** data Jul 2015

UNF Ben Smith - DEAP underground in Canada

Background – radon decay

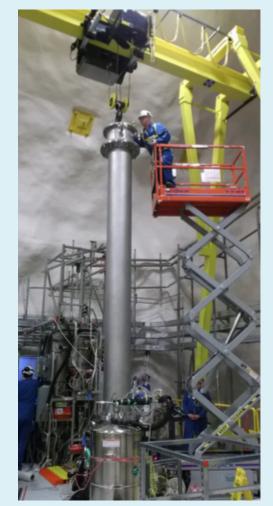
- 222 Rn ... 210 Pb (τ = 22 years) ... 210 Po
- ²¹⁰Po emits 5.3 MeV α could mimic WIMP signal!
- Bulk acrylic is radon-free, but surfaces have been exposed to lab air

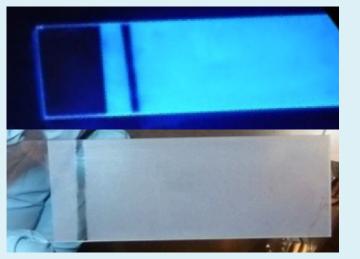
25 August 2015


• Solution: sand off inside surface of acrylic vessel, and never expose it to air again

Resurfacer removes radon-laced acrylic

- Resurfacing robot sanded off inner acrylic
- Ran for 200 hours last fall
- Extracted without exposing vessel to air
- Purging with N₂ or at vacuum ever since



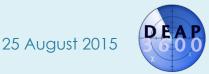

Wavelength-shifter

- PMTs aren't sensitive to UV scintillation light
- Vacuum-deposited 3µm of TPB wavelength-shifter over inner surface of acrylic vessel

Deployment tube

TPB under UV and visible light

Evaporation source



We're nearly ready!

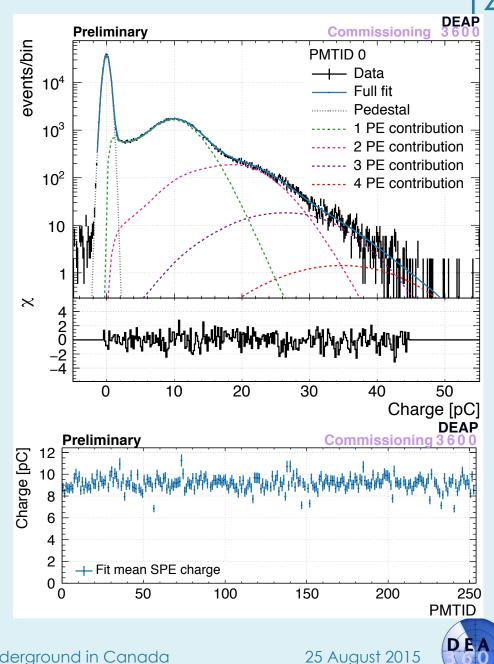
- Construction to-do list
 - Fill veto tank with water
 - Prepare for liquid argon
 - Insert flow guides and cooling coils
 - Cool down detector with argon gas

This space is intentionally left blank

Commissioning

Lots of commissioning data

- We've been taking real data during construction
- Light injection using LEDs and fibres
 - Optical properties, PMT characterisation, effect of wavelength-shifter deposition...
- Light injection using laserball inside detector
 - Precise timing, optical properties...
- "Dark" data
 - Backgrounds, detector stability...



PMT calibration

- Shine LEDs through fibres to inject light
- Excellent fit to charge spectrum using Polya function

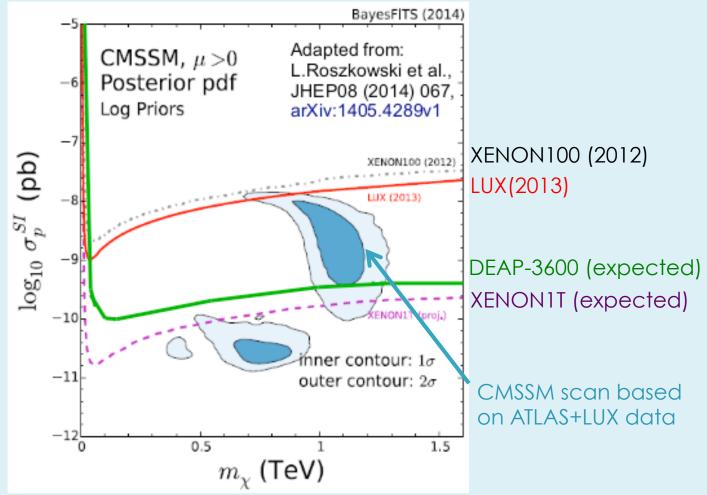
Fibre

location

n Smith - DEAP underground in Canada

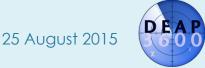
Sensitivity and outlook

Dominant backgrounds


Expected events for 3 years of data-taking

Background type	Mitigated by	Events passing energy cut	Events passing energy, position & pulse shape cuts
Neutrons (nuclear recoil)	Water tank, filler blocks	30	< 0.2
Surface α (nuclear recoil)	Material choice, resurfacing	150	< 0.2
³⁹ Ar β (electron recoil)	Pulse shape discrimination	1.6 x 10 ⁹	< 0.2

Expected sensitivity



Summary

- Huge construction progress made in the last year
- Lots of commissioning data taken to understand optics, PMTs etc
- Very close to taking liquid argon data
- Expect first results early next year

