Control of Radon Daughters in the DEAP-3600 Acrylic Vessel

DEAP Collaboration

University of Alberta

D. Grant, P. Gorel, **A. Hallin**, J. Soukup, C. Ng, B.Beltran, J. Tang, K. Olsen, R. Chouinard, T. McElroy, S. Crothers, S. Liu, P. Davis, and A. Vinagreiro

Carleton University

K. Graham, C. Ouellet, Carl Brown

Queen's University

M. Boulay, B. Cai, D. Bearse, B. Broerman, K. Dering, **M. Chen**, S. Florian, R. Gagnon, V.V. Golovko, P. Harvey, M. Kuzniak, J.J. Lidgard, **A. McDonald**, C. Nantais, **A.J. Noble**, E. O'Dwyer, P. Pasuthip, L. Veloce, **W. Rau**, T. Sonley, P. Skensved, M. Ward

SNOLAB/Laurentian

B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, T. Pollmann

SNOLAB

I. Lawson, K. McFarlane, P. Liimatainen, O. Li, E. Vazquez Jauregui

TRIUMF

F. Retiere, Alex Muir, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, C. Ohlmann, K. Olchanski , V. Strickland

Rutherford Appleton Laboratory

P. Majewski, R. Shah

Royal Holloway University of London

A.Butcher, E. Grace, R. Guenette, J. Monroe, J. Walding, M. Widorski

University of Sussex

S. Churchwell, G. Booker, Simon Peeters

DEAP Collaboration October 20, 2012

Single-Phase Liquid Argon

Dark matter Experiment with Argon and Pulse-shape discrimination

3600kg LAr in a clean spherical acrylic vessel coated with wavelength shifter

Estimated light yield: 8 pe/keV

Backgrounds: < 0.2 Exposure: 1000kg FV for 3 years

Goal: 10⁻⁴⁶cm² sensitivity for 100 GeV WIMP

Background Control

Source	Methods
Radon in liquid argon	Charcoal traps; passivated SS lines
Betas and gammas	Pulse-shape discrimination
Neutrons	Screening of components; Plastic (hydrogen) around LAr; Control of alphas in acrylic ¹³ C(α,n)
Alphas at acrylic surface	This talk

Types of Surface Alphas

Path	Signal	
F1	Fraction of E in TPB (Light yield of TPB less than LAr)	
F2	Full energy in TPB only	Could overlap Divi signal
F3	TPB + liquid argon (Much higher light production than WIMP scatter)	

Control Strategy

Limit exposure to ²²²Rn during manufacture to control long-lived ²¹⁰Pb Resurface AV under vacuum after construction

Coat AV with pure TPB under vacuum

Radiopurity Requirements

	Acrylic Vessel Shell
Dominant background	Surface events from bulk contamination
²³⁸ U	0.3 ppt
²³² Th	1.3 ppt
²¹⁰ Pb	1.1 x10 ⁻⁸ ppt (= 31mBq/tonne)

Limits correspond to 0.01 events in 3 tonne-years. We take credit for position reconstruction but not pulse-shape discrimination for alphas in TPB

²¹⁰Pb is a daughter of ²²²Rn and can exist out of equilibrium with the higher isotopes of the ²³⁸U chain.
We must quantify the exposure of acrylic material to ²²²Rn, especially as Radon is soluble in acrylic.

Meeting the Requirements

- Interplay between design of AV and material cleanliness.
 - Must make vessel out of a pure-monomer panel.
 - Can not cast it as a sphere.
 - Start with panels and thermally form them into shape.
- Years of effort assessing optical properties
 - Multiple samples from five suppliers
- Gamma assay
- Verification of contamination levels
 - Advertisement: See poster by Corina Nantais

Process (1/2)

Large petrochemical plant (eastern industrial seaboard of Thailand)

Fractional distillation last stage of process.

Air introduced with distillation to inhibit spontaneous polymerization.

Our MMA not stored at ThaiMMA. Truck filled off continuous flow.

Connection for MMA and air return

Clean hose to sealed SS storage tank.

Construction of Sphere from 5 panels

Most panels for DEAP were 96" x 128" x 4.5" thick Five panels thermoformed into sphere

Once Panels Are Formed....

Radon penetrates into solid PMMA a distance of 0.17mm - Wojcik NIM B61 (1991) pp8-11

The resurfacer will deal with lead left behind by normal (~5Bqm⁻³) air.

Once the panels are formed we are most concerned with the vessel underground at SNOLAB (~120Bqm⁻³) and when the vessel is at elevated temperatures (annealing)

One Unit of Radon Contamination

- If MMA is moved into a closed volume, the radon in the volume will enter the MMA.
- Using $\rho(MMA) \cong 1$ tonne/m³ and the decay constants of ²²²Rn and ²¹⁰Pb we obtain

$$A(^{210}Pb)\left[\frac{mBq}{tonne}\right] = 0.46 A(^{222}Rn)\left[\frac{Bq}{m^3}\right]$$

This is one unit of radon contamination.

Radon Loads (1/2)

1 unit of contamination $A \cong 5Bq/m^3$

1 unit of contamination A = 6.3±3.5 Bq/m³

Radon Loads (2/2)

1 unit of contamination

short term Storage + 1 unit 10.3 Bq/m³

 $A = 6.3 \text{ Bq/m}^{3}$

Reactor: proprietary additives 2

Pour + 1 unit $A = 10.3 Bq/m^3$

Chris Jillings: Radon Daughters in DEAP-3600 Acrylic Vesse

Stack moulds for Hydroclave. Panels "cooked" under water for ~ 1 week.

Estimated ²¹⁰Pb Loads

	AV Shell
	Thai MMA
Distillation [cont. units]	1.25
Storage [cont. units]	0
Truck [cont. units]	1
A(²²² Rn) [Bq/m ³]	3.5±2
Expected ²¹⁰ Pb [mBq/tonne]	3.6
	RPT Asia
MMA Storage tank [cont. units]	1
Reactor Vessel [cont. units]	0.5
Post-reactor storage [cont. units]	1
Moulds [cont. units]	1
A(²²² Rn) [mBq/m ³]	6.3 to 10.8
Expected ²¹⁰ Pb [mBq/tonne]	10 to 17
Total ²¹⁰ Pb [mBq/tonne]	14 to 21

Detailed Radon Diffusion Calculations

$$\frac{\partial C}{\partial t} = D \frac{d^2 C}{dx^2} - \lambda C$$

$$\frac{C_{j}^{n+1} - C_{j}^{n}}{\Delta t} = D \frac{C_{j+1} - 2C_{j} + C_{j-1}}{(\Delta x)^{2}} - \lambda C_{j}^{n}$$

See *Numerical Recipes* or your favourite numerical textbook.

Stability
$$\equiv \frac{2D\Delta t}{(\Delta x)^2} \leq 1$$

Need the solubility, S, to know the concentration in the first layer of acrylic.

S = S(T) and D = D(T)

Parameters

- Use Wojcik NIM B61 (1991) pp8-11
- CheFEM, The Sanchez-Lacombe equation of state is used over the complete temperature range, diffusion based on the Free Volume theory for diffusion and the mass transfer is based on Maxwell-Stefan equation for diffusion (chemical potentials from Sanchez Lacombe in combination with the Free Volume expression are used for the mass transfer = permeation calculation)

•
$$D = D_0 \exp(-\Delta E_d/RT) [cm^2/s]$$

- $S = S_0 \exp(-\Delta H_s/RT) 76 T/273 [g cm^{-3}/g cm^{-3}]$
- R = 1.986e-3 kcal/mol
- $D_0 = 481.5$; $\Delta E_d = 16.14$
- $S_0 = 3.55e-4; \Delta H_s = -3.32$

Rn more mobile at high temperature

Diffusion Constant for Rn in PMMA

... but less soluble

AV in Oven with Lid for Radon-Reduced Air

RRA verified with Durridge Rad7*

* Thanks to Ian Lawson for assistance with the Rad-7.

Calculated ²¹⁰Pb Activity

²¹⁰Pb Activity after Three Anneal Cycles

DEA

(Diffusion equation with measured temperatures and activities.)

Conclusions

- A physically strong, optically transparent, radiologically pure acrylic vessel is being built for the DEAP experiment.
- Extensive QA including multiple site visits and excellent co-operation with Reynolds Polymer Technology (Colorado, USA) and RPTAsia (Rayong, Thailand) has resulted in a vessel that will meet DEAP's background requirements.
- To achieve this the vessel was made of virgin monomer with a known radon-exposure history.
- Care was taken during annealing to keep Radon diffusion within acceptable limits.
- With suitable care, a future experiment could improve on our work.