

# Light detection in the Dark-matter Experiment using Argon Pulse Shape Discrimination

Fabrice Retière on behalf of the DEAP collaboration





# Two technologies for dark matter search with noble liquids





### Scintillation in LAr

### Excitation: $Ar^*$ (1)

$$Ar^* + Ar + Ar \rightarrow Ar_2^* + Ar$$
  
 $Ar_2^* \rightarrow 2Ar + \gamma$ 

### Ionization: Ar+ (2)

$$Ar^+ + Ar \rightarrow Ar_2^+$$
  
 $Ar_2^+ + e^- \rightarrow Ar^{**} + Ar$   
 $Ar^{**} \rightarrow Ar^* + heat$ 

$$Ar^* + Ar + Ar \rightarrow Ar_2^* + Ar$$
  
 $Ar_2^* \rightarrow 2Ar + \gamma$ 

### □ Excitation

- Production independent of energy density
- Singlet ~35%, triplet ~65%

### **□** Ionization

- Production higher for high energy density
- Singlet ~50%, triplet ~50%

### ☐ Pulse shape discrimination

- $\circ \tau_{\text{singlet}} \sim 6 \text{ns}$
- $\circ \tau_{\text{triplet}} \sim 1500 \text{ns}$

# DEAP-3600 approach Maximize pulse shape discrimination

Operated at zero field to maximize photon yield





### Pulse shape discrimination



- γ suppression better than 3x10<sup>-8</sup> in 43-86 keVee achieved at SNOLAB
- Simple model of photon statistics predicts 10<sup>-10</sup> suppression at 15 keVee, allowing for sufficient background rejection of <sup>39</sup>Ar in DEAP-3600



# Maximum PSD but worse position reconstruction



•3600 kg of Liquid Argon

### •1000 kg Fiducial mass

• Target sensitivity 10<sup>-46</sup>cm2 at 100GeV WIMP mass

Wavelength shifter (distilled TPB)

Vessel

# A photogenic detector





# Now fully closed





## Moving towards completion

- ☐ Wavelength shifter deposition on-going
- ☐ Liquid Argon fill expected this summer
- ☐ First data in liquid Argon by the end of 2015
- ☐ Data taking with empty 
  detector
  - Cerenkov in acrylic light guides



Run: 9406 Subrun: 3 Event: 300460

Total energy: 1520 PE

High event rate: ~1 event/day





# Detecting scintillation light

| Main process               | Contrib. to PSD            | Contrib. to pos. reco.     | Remedy                 |
|----------------------------|----------------------------|----------------------------|------------------------|
| LAr scintillation          | Recombination fluctuations | -                          | Model? Dedicated setup |
| LAr purity                 | Triplet lifetime           | -                          | Recirculate & filter   |
| LAr scattering             | -                          | Worsen, non-unif. bias     | External source?       |
| TPB abs. / em.             | - (fast time constant)     | - (100% absorption)        |                        |
| TPB scattering             | - (if not too large)       | Worsen, non-unif bias      | Calibrate              |
| TPB – AV interface         | -                          | Increase scatter           | Calibrate              |
| Attenuation in light guide | Photon loss                | Photon loss, non-unif bias | Calibrate              |
| PMT efficiency             | -                          | Bias if not uniform        | Calibrate              |
| PMT dark noise             | Increase late "light"      | -                          | Cut out, likelyhood    |
| PMT after-pulsing          | Increase late "light"      | -                          | Cut out, likelyhood    |
| Electronics noise          | Worsen resolution          | -                          | Pulse counting         |



## Calibrating optics

- ☐ Inject light in light guides
- ☐ Laser ball
  - 440nm and 375nm a the center of the detector
- □ <sup>39</sup>Ar uniformity
  - o Full and partial fill
- ☐ Surface alphas











### Outlook

- ☐ Filling with Liquid Argon this year
  - First measure of PSD coming soon
    - We will know how far we can push it
  - Assess position reconstruction with <sup>39</sup>Ar
- ☐ Dark matter limit in 2016
- ☐ If concept is a success consider 50t "upgrade"
  - Depleted argon
  - New photo-detectors (100 m²), SiPM, HPD,...



# DEAP TRIUMF

### **DEAP Collaboration**

#### **University of Alberta**

D. Grant, P. Gorel, A. Hallin, J. Soukup, C. Ng, B.Beltran, K. Olsen, R. Chouinard, T. McElroy, S. Crothers, S. Liu, P. Davis, and A. Viangreiro

#### **Carleton University**

K. Graham, C. Ouellet, Carl Brown

#### **Queen's University**

M. Boulay, B. Cai, D. B. Broerman, Bearse, J. Bonnat, K. Dering, M. Chen, S. Florian, R. Gagnon, V.V. Golovko, P. Harvey, M. Kuzniak, A. McDonald, C. Nantais, A.J. Noble, E. O'Dwyer, P. Pasuthip, L. Veloce, W. Rau, T. Sonley, P. Skensved, M. Ward

#### **SNOLAB/Laurentian**

B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, T. Pollmann, C. Stone

#### **SNOLAB**

I. Lawson, K. McFarlane, P. Liimatainen, O. Li

#### **TRIUMF**

F. Retiere, Ben Smith, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, C. Ohlmann, K. Olchanski, V. Strickland

#### **National Autonomous University of Mexico**

E. Vazquez Jauregui

#### **Rutherford Appleton Laboratory**

P. Majewski

#### **Royal Holloway University of London**

J. Monroe, J. Walding, A. Butcher

#### **University of Sussex**

Aug 28 2015 Peeters





### Projected backgrounds

### Assuming 8PE per keV

| Background                    | Rate/count                       | Mitigation                                                                                           |
|-------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------|
| <b>Neutron</b><br>In 1t LAr   | < 2 pBq/kg<br>< 0.06 count/year  | Shielding: 6000 mwe (SNOLAB), Active water shield, light guides and filler blocks Material selection |
| β & γ<br>In 1t LAr            | < 2 pBq/kg<br>< 0.06 count/year  | Pulse shape discrimination Material selection (for $\gamma$ )                                        |
| Radon<br>In 1t LAr            | < 1.4 nBq/kg<br>< 44 count/year* | Material selection, SAES getter, cold charcoal radon trap * High energy events, not in ROI           |
| <b>Surface</b> α<br>In 1t LAr | < 0.2 mBq/m²<br>< 0.6 count/year | Material selection (acrylic), sanding of AV (1mm removal), fiducialization.                          |

Total of <0.6 events in ROI in 3 years for a spin-independent WIMP-nucleon cross section sensitivity of 10<sup>-46</sup> cm<sup>2</sup> at 100GeV.



# "Naked" acrylic vessel





# Bonded acrylic light guides





# Add PMTs, reflectors and filler blocks







# Relying on high efficiency R5912





# **Pulse Charge**



Measured from prompt window in AARF data.