

CIPANP 2015

Commissioning the DEAP3600 Detector

Dr Mark Ward Queen's University, Canada

On Behalf of the DEAP Collaboration

DEAP3600 Collaboration

DEAP3600

- Single phase liquid argon (LAr) dark matter detector
- Located at SNOLAB, 2070m underground in Vale's Creighton mine, Sudbury Ontario, Canada

DEAP3600

- * 3600 kg liquid argon target
 - * 1000 kg fiducial
- * Acrylic vessel
 - Ultra high purity acrylic
 - Resurfaced in-situ
- Vacuum deposited Tetraphenyl butadiene (TPB) wavelength shifter
- * 255 PMTs
 - * Mounted on 20 inch light guides
- * Shielding
 - * Acrylic light guides and high density polyethylene filler material
 - Water shield tank

Liquid Argon Scintillation

 Ionization of ultra high purity argon allows the production of excited dimers

- Formation of singlet and triplet states which have well separated lifetimes (7ns versus 1.5µs)
- Ratio of singlet and triplet states are exploited to produce excellent pulse shape discrimination (PSD)
- Radiative decay produces 128 nm light
- * Projected light yield of 8 pe/keV_{ee}

Pulse Shape Discrimination

* Electronic and nuclear recoils produce different ratios of singlet and triplet states.

Backgrounds

Budget for 3 year run <0.6 events

Background	Raw No. Events in Energy ROI	Fiducial No. Events in Energy ROI
Neutrons	30	<0.2
Surface α	150	<0.2
³⁹ Arβ(natural)	1.6x10 ⁹	<0.2
³⁹ Ar β (depleted)*	8.0x10 ⁷	< 0.01

* Factor of 20 reduction - Possible factor of 100

Energy ROI: 60 - 120 KeVr

- Neutron recoils : (*α*,n) fission and μinduced
 - Controlled by strict material screening and assay
 - Shielding (Acrylic + HDPE + Water)
- Surfaces : Rn daughters and contamination
 - Resurfacing acrylic vessel to reach bulk background levels
 - Passivation of all argon wetted surfaces
 - Fiducialisation
- * β/γ events : ³⁹Ar
 - * 1 Bq/kg
 - * Predicted PSD reduction $> 10^{-10}$

AV alpha background reduction

* Acrylic ²¹⁰Pb purity < 1.1×10^{-19} g/g - 0.1 events/3 years

DEAP3600 Resurfacer

- Designed for 0.1-1mm acrylic removal inner AV
- Radon scrubbed N₂ purge gas and UPW controls Rn levels during operation.
- Surface contamination reduced to bulk purity levels
- Deployed September 2014
- * Completed 200 hr operation.

DEAP3600 Resurfacer

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

- Acrylic Vessel completed November 2013
- Installation of inner detector instrumentation through to June 2014
- AV installed in final location July 2014
- * AV Complete November 2014
- Steel Shell and Veto PMTs completed April 2015

Cryogenics and Process Systems

- Purification Systems
 - Delivered and installed
- Liquid Nitrogen Systems
 - * Storage capable of maintaining AV for 4 days
 - Commissioned and been operating since June 2014
- Liquid Argon Storage
 - Began transfers between surface and SNOLAB March 2015
- Detector Cooling
 - Delivered and commissioned June 2014

Calibration Commissioning

- * Successful high voltage ramping of all 255 PMTs
- Exercised DAQ processing chain
- Signal injection
- Light injection system
 - Acrylic and Aluminium Reflectors and Fibre Optics Systems (AARFS) operated
 - Laserball before cold data
- Neutron and Gamma calibration
 - Deployment hardware complete

Neutron and Gamma Calibration

- Equator calibration via Cal A, B and E
 - * Provides equal distance calibration set at different ϕ
- * Looped tube Cal F
 - * Provides equal distance calibration set at different θ
 - Calibration of neck region
- Calibration tubes and race track served by stepper motor positioning system
- Calibration via tagged
 AmBe and ²²Na sources

Neutron and Gamma Calibration

AARFS

- Aluminium coated stubs bonded to 20 light guides around the detector
- * Deliver light via fibres directed at the PMT
- Light is reflected into the detector
- 435nm LED and 445nm laser

AARFS

AARFS Low intensityDark Noise SPE

- * PMT response
- SPE Calibration
 - Good dark noise and low light injection agreement
- PMT Timing
- Detector optics
 - Mature light transport models

AARFS

- * PMT response
- SPE Calibration
 - Good dark noise and low light injection agreement
- PMT Timing
- Detector optics
 - Mature light transport models

Current and Future

- * TPB vacuum deposition May
- Laser ball optical calibration May
- * Vacuum + TPB data June
- Installation of detector cooling coils July
- Ultra high purity Argon gas fill and gas data August onwards

Physics Reach

* 10⁻⁴⁶ cm² sensitivity at 100 GeV for 3 years physics run

* First dark matter physics results 2016