Single Photon Counting and PMT Characterization for DEAP-3600

LBERTA

Thomas McElroy University of Alberta CAP Congress June 16th, 2015

The DEAP-3600 Detector

- Dark Matter Experiment using Argon and Pulse shape discrimination.
- 3600 kg of LAr (1000 kg fiducial).
- Single phase detection with 255 PMTs giving ~70% cathode coverage.
- Located 2 km (6000 mwe) underground in SNOLAB, Sudbury ON.

Particle collisions in LAr cause excited dimer states to form.

The de-excitation of dimers emits UV photons isotropically and is not reabsorbed by the LAr.

The UV light is absorbed by a wavelength shifter on the surface of the AV and reemitted sotropically in blue.

σ

DEAP-3600 PMTs and DAQ

Fast rise time pulse form PMT

DEAP-3600 PMTs and DAQ

Amplified and broadened for better charge measurement with V1720s.

DEAP-3600 PMTs and DAQ

Digitized and suppressed.

Pulse Shape Discrimination

Pulse Shape Discrimination

DEAP requires PSD to a level of 10⁻¹⁰

DEAP Physics Goal

 Charge distribution for single photoelectron (SPE)

High variability in number of electrons released at first dynode causes wide SPE charge spread.

• Early Pulsing

~25ns (PE transit time) – Early Pulse Early pulsing not discussed further in talk

Photon only releases one electron at first dynode causing small pulse.

Backscatters

~50ns (2 X PE transit time)

Elastic Backscatter

• Afterpulsing

Ionization of residual gas

• Afterpulsing

One or many

electrons

released

Acrylic and Aluminium Refletor and Fibre optic-System (AARF)

Fibre optic lines are connected to 20 light guides throughout the detector.

Each fibre is coupled to a LED at the opposite end.

 The LEDs can be flashed at different rates and intensities to help calibrate the detector.

AARF Signal

Stack of ~500 000 AARF Events in single PMT

• Sharp (~50 ns) prompt photon window

Pulse Finding

- The Standard pulse finder for DEAP looks at pulses in derivative space and looks for a derivative threshold crossing.
- Pulse finding in derivative space reduces error due to baseline shifts.

Pulse Finding

Pulses found in MC generated waveform.

Pulse splitting voltage threshold at 0.005 V

Secondary Pulses

Secondary Pulses

Elastic Backscatter

Pulse Charge

Measured from prompt window in AARF data.

Sample of Other Pulse Variables

*Preliminary MC Data

DEAP Single PE

DSPE measures the pulse observables and does a maximum likelihood fit for the number of PE that contribute to the pulse.

Current/Future Work

- Characterizing and understanding inelastic backscatters
- Update and verify MC pulse characteristics
- Optimize pulse finding and DSPE parameters
- Calculate efficiency and systematics for pulse finding / SPE counting

DEAP Collaboration

Special Thanks to:

CFI, NSERC, Province of Alberta, Province of Ontario and SNOLAB

Upcoming CAP DEAP Talks:

Session T3-4: James Bueno - Alpha Backgrounds Derek Cranshaw - Wavelength-shifter

Also, checkout DEAP Posters at the poster session.

Backup Slides

SPE Spectrum Model

Secondary Pulses

Early Sub-IPE AP

"Cesium" AP

Low Charge Late AP

