

Dark-matter Experiment using Argon Pulse Shape Discrimination

Chris Ouellet - Carleton University, on Behalf of the DEAP Collaboration

Ar Scintillation

$$\begin{array}{ccc} Ar^{*}+Ar \longrightarrow Ar_{2}^{*} & \longrightarrow & 2Ar + \gamma \\ Ar^{+}+Ar \longrightarrow Ar_{2}^{*}+e^{-} \rightarrow & Ar_{2}^{*} & \rightarrow & 2Ar + \gamma \end{array}$$

- Decay times of singlet and triplet states **do not** depend density of excited species along the track, linear energy transfer (LET)
- Intensity ratios of singlets to triplets
 do depend on (LET)
- Easily purified, inexpensive, accessible liquid temperature 87
 K, very large detector mass possible
- 8 pe/keV light yield
- 128 nm molecular spectrum not absorbed by bulk Ar
- 128 nm light is deep UV, needs to be wavelength shifted for PMT detection

Pulse Shape Discrimination

Experiments at SNOLAB

Detector Schematic

- 3600 kg 1000 kg fiducial single phase liquid Ar
- 85 cm radius sphere
- 255 8 inch PMTs (warm) Hamamatsu R5912 HQE (32% QE, 75% coverage)
- 50 cm light-guides (neutron shielding from glass, thermal insulation for PMTs)
- Interior has only argon and wavelength shifter
- Filler blocks for neutron shielding
- Detector surrounded by 8 m water shield

Detector Backgrounds

- Background rate goal in sensitive region is ~0.1/tonne/year
- Fast neutrons from (a,n) activity in acrylic, TPB, PMT glass, steel shell and surrounding rock
- Cosmic ray induced neutrons
- β from ³⁹Ar and other β and γ emitters
- Radon gas and its daughters

Background Mitigation Strategy

- DEAP has 6000 mwe overburden and active muon veto
- 8 m water shielding surrounding steel shell
- Selection of materials for:
 - Low U and Th content (acrylic)
 - Neutron absorption (light guides, filler blocks)
 - High reflectivity to enhance PSD
 - Reduced emanation (process systems <5µBq of ²²²Rn)
- SEAS getter and cold radon-trap filtration of Ar
- Specific construction steps against Radon daughters
- Potential move to depleted Ar factor of x10 β reduction over natural Ar (1 Bq/kg)

*** More detail in Corina's talk for vaporization/assay of acrylic

- Extensive and enormous effort
- Acrylic, polymethal-meth-acrylate, sourced, counted in-situ and followed through every step from distillation to thermoforming pure MMA monomer sheets (Thai MMA)
- Electropolishing of metal surfaces including interior of the steel shell to reduce radon emanation
- Seamless tubing and where unavoidable welds in process system performed with non-thoriated TIG welding to reduce radon emanation
- Developed vaporization system for acrylic assays, ultra low background emanation chamber to qualify process systems materials and cleaning methods

- Extensive and enormous effort
- Acrylic, polymethal-meth-acrylate, sourced, counted in-situ and followed through every step from distillation to thermoforming pure MMA monomer sheets (Thai MMA)
- Electropolishing of metal surfaces including interior of the steel shell to reduce radon emanation
- Seamless tubing and where unavoidable welds in process system performed with non-thoriated TIG welding to reduce radon emanation
- Developed vaporization system for acrylic assays, ultra low background emanation chamber to qualify process systems materials and cleaning methods

- Extensive and enormous effort
- Acrylic, polymethal-meth-acrylate, sourced, counted in-situ and followed through every step from distillation to thermoforming pure MMA monomer sheets (Thai MMA)
- Electropolishing of metal surfaces including interior of the steel shell to reduce radon emanation
- Seamless tubing and where unavoidable welds in process system performed with non-thoriated TIG welding to reduce radon emanation
- Developed vaporization system for acrylic assays, ultra low background emanation chamber to qualify process systems materials and cleaning methods

- Extensive and enormous effort
- Acrylic, polymethal-meth-acrylate, sourced, counted in-situ and followed through every step from distillation to thermoforming pure MMA monomer sheets (Thai MMA)
- Electropolishing of metal surfaces including interior of the steel shell to reduce radon emanation
- Seamless tubing and where unavoidable welds in process system performed with non-thoriated TIG welding to reduce radon emanation
- Developed vaporization system for acrylic assays, ultra low background emanation chamber to qualify process systems materials and cleaning methods

- Pervasive gas, in higher concentration underground than surface (100 vs 10 Bq/m³)
- Can diffuse into materials, particularly acrylic (~100 µm depth)
- Daughter product Polonium of particular concern, plates out on metal and TPB
- ²¹⁴Po major portion of DEAP prototype low energy background
- Control of lab air exposure of inner surface of AV
- Re-surfacing inner surface of AV before TPB deposition (1mm removal)
- ²¹⁰Po and Pb controlled to10⁻²⁰g/g

- Pervasive gas, in higher concentration underground than surface (100 vs 10 Bq/m³)
- Can diffuse into materials, particularly acrylic (~100 µm depth)
- Daughter product Polonium of particular concern, plates out on metal and TPB
- ²¹⁴Po major portion of DEAP prototype low energy background
- Control of lab air exposure of inner surface of AV
- Re-surfacing inner surface of AV before TPB deposition (1mm removal)
- ²¹⁰Po and Pb controlled to10⁻²⁰ g/g

- Pervasive gas, in higher concentration underground than surface (100 vs 10 Bq/m³)
- Can diffuse into materials, particularly acrylic (~100 µm depth)
- Daughter product Polonium of particular concern, plates out on metal and TPB
- ²¹⁴Po major portion of DEAP prototype low energy background
- Control of lab air exposure of inner surface of AV
- Re-surfacing inner surface of AV before TPB deposition (1mm removal)
- ²¹⁰Po and Pb controlled to 10⁻²⁰ g/g

- Pervasive gas, in higher concentration underground than surface (100 vs 10 Bq/m³)
- Can diffuse into materials, particularly acrylic (~100 µm depth)
- Daughter product Polonium of particular concern, plates out on metal and TPB
- ²¹⁴Po major portion of DEAP prototype low energy background
- Control of lab air exposure of inner surface of AV
- Re-surfacing inner surface of AV before TPB deposition (1mm removal)
- ²¹⁰Po and Pb controlled to10⁻²⁰ g/g

Queen's University

RPT Colorado

University of Alberta

RPT SNOLAB

Construction Completion Schedule

- Light Guide Bonding, May/July 2013
- Process systems and cooling coil commissioning
- Installation of magnetic compensation coils
- Shield tank water systems commissioning
- PMT and filler block installation
- Re-surfacing and TPB deposition
- First calibrations and cool-down end of 2013

Anticipated Sensitivity Region

- Conservative effective resolution of 10 cm (predict x2 with better max likelihood fitter analysis)
- Attenuation length of at least 4 m
- 15keVee threshold (approx. 60 keV recoil energy), 3-yr exposure

Potential For World Leading Results

(Spin independent)

DEAP Collaboration

Royal Hollaway University of London

J. Monroe, J. Walding, A. Butcher

SNOLAB/Laurentian

B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, M. Batygov

SNOLAB

I. Lawson, K. McFarlane, P. Liimatainen, O. Li, E. Vazquez Jauregui

TRIUMF

F. Retiere, Alex Muir, P-A. Amaudruz, D. Bishop, S. Chan, C.Lim, C. Ohlmann, K. Olchanski , V. Strickland

University of Sussex

S.J.M. Peeters

University of Alberta

D. Grant, P. Gorel, A. Hallin, J. Soukup, C. Ng, B.Beltran, K.Olsen, R. Chouinard, T. McElroy, S.Crothers, S. Liu, P.Davis, and A. Viangreiro

Carleton University

K. Graham, C. Ouellet, Carl Brown

Queen's University

B. Boerman, M. Boulay, B. Cai, D. Bearse, K. Dering, M.Chen, S. Florian, R. Gagnon, P. Harvey, M. Kuzniak, J.J.Lidgard, A. McDonald, C. Nantais, A.J. Noble, P. Pasuthip, T.Pollman, W. Rau, T. Sonley, P. Skensved, L. Veloce, M. Ward

Rutherford Appleton Laboratory

P. Majewski

Canada Foundation for Innovation Fondation canadienne pour l'innovation

