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Ar Scintillation 
 Decay times of singlet and triplet 

states do not depend density of 

excited species along the track, 

linear energy transfer (LET)  

 Intensity ratios of singlets to triplets 

do depend on (LET) 

 Easily purified, inexpensive, 

accessible liquid temperature 87 
K, very large detector mass 

possible 

 8 pe/keV light yield 

 128 nm molecular spectrum not 

absorbed by bulk Ar 

 128 nm light is deep UV, needs to 

be wavelength shifted for PMT 

detection  
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Pulse Shape Discrimination 

Nuclear Recoil  
Tagged AmBe source 

Background (γ) 

120-240 PE = 60 keV Recoil  
Suppression > 3x10-8 

 



Experiments at SNOLAB 



Detector Schematic 
 3600 kg – 1000 kg fiducial 

single phase liquid Ar  

 85 cm radius sphere 

 255 8 inch PMTs (warm) 

Hamamatsu R5912 HQE (32% 

QE, 75% coverage)  

 50 cm light-guides (neutron 

shielding from glass, thermal 

insulation for PMTs)  

 Interior has only argon and 

wavelength shifter 

 Filler blocks for neutron 

shielding 

 Detector surrounded by 8 m 

water shield   



Detector Backgrounds 

 Background rate goal in sensitive region is 

~0.1/tonne/year 

 Fast neutrons from (α,n) activity in acrylic, TPB, PMT 

glass, steel shell and surrounding rock 

 Cosmic ray induced neutrons   

 β from 39Ar and other  β and γ emitters 

 Radon gas and its daughters  



Background Mitigation Strategy 

 DEAP has 6000 mwe overburden and active muon 

veto  

 8 m water shielding surrounding steel shell 

 Selection of materials for: 

 Low U and Th content (acrylic)  

 Neutron absorption (light guides, filler blocks)  

 High reflectivity to enhance PSD  

 Reduced emanation (process systems <5μBq of 222Rn)  

 SEAS getter and cold radon-trap filtration of Ar 

 Specific construction steps against Radon daughters 

 Potential move to depleted Ar - factor of x10 β 

reduction over natural Ar (1 Bq/kg)   



Radiopurity of Materials 
 Extensive and enormous effort  

 

 Acrylic, polymethal-meth-acrylate, 
sourced, counted in-situ and followed 
through every step from distillation to 
thermoforming pure MMA monomer 
sheets (Thai MMA)  

 

 Electropolishing of metal surfaces 
including interior of the steel shell to 
reduce radon emanation  

 

 Seamless tubing and where 
unavoidable welds in process system 
performed with non-thoriated TIG 
welding to reduce radon emanation  

 

 Developed vaporization system for 
acrylic assays, ultra low background 
emanation chamber to qualify 
process systems materials and 
cleaning methods    

*** More detail in Corina’s talk  
for vaporization/assay of acrylic 
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Radon Mitigation 
 Pervasive gas, in higher 

concentration underground than 

surface (100 vs 10 Bq/m3) 

 Can diffuse into materials, 

particularly acrylic (~100 μm 

depth) 

 Daughter product Polonium of 

particular concern, plates out on 

metal and TPB 



214Po major portion of DEAP 

prototype low energy background 

 Control of lab air exposure of inner 
surface of AV  

 Re-surfacing inner surface of AV 

before TPB deposition ( 1mm 

removal)  


210Po and Pb controlled to10-20 g/g 
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Radon Mitigation 
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Construction Status I 

RPT Colorado 
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Construction Status II 

RPT SNOLAB 



Construction Status II 



Construction Status II 



Electronics Underground - TRIUMF 

Condenser  
Radon Trap 

Filler Blocks 

PMTS 
 

Construction Status II 



Construction Completion Schedule 

 Light Guide Bonding, May/July 2013 

 Process systems and cooling coil commissioning  

 Installation of magnetic compensation coils 

 Shield tank water systems commissioning  

 PMT and filler block installation  

 Re-surfacing and TPB deposition 

 First calibrations and cool-down end of 2013  



Anticipated Sensitivity Region 

 Conservative effective resolution of 10 cm (predict x2 with better max likelihood fitter analysis) 

 Attenuation length of at least 4 m 

 15keVee threshold (approx. 60 keV recoil energy), 3-yr exposure 



Potential For World Leading Results  

(Spin independent) 

~ 1 year 
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