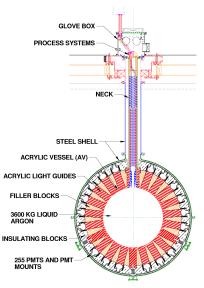
Radon Control in DEAP-3600

Mark Ward

Calgary 14th June 2012

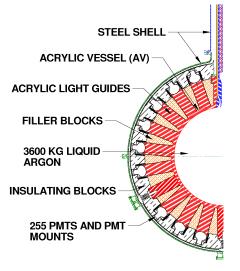
Radon Control in DEAP-3600 (Mark Ward)

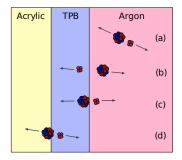
э


イロン イロン イヨン イヨン

- DEAP3600
- Key components for radon control
- Treatment of Argon wetted surfaces
- Results from a Ultra-low background radon emanation system.

< ロ > < 同 > < 回 > < 回 > < □ > <


DEAP3600


- 85cm radius TPB coated acrylic sphere filled with 3600 kg of liquid Argon
- 255 PMTs mounted at the end of 8inch diameter 20inch long light guides
- Background target is 0.3 events inside the energy ROI and fiducial volume (1000 kg) in 3 years of running.
- Aggressive Radon emanation target of 5µBq for all argon wetted components.

< D > < A > < B >

DEAP3600

QUI ID EDGE YGYDEMIG GUDA

- Cases B and D are dangerous for producing low energy events which could leak into the ROI
- In case B, 28% of events leak into the ROI energy

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Key Radon Control Areas

- ²²²Rn emanation is an issue for all experiments and control is vital for meeting the targets of the DEAP experiment
 - Radon has a short 3.8 day half life
 - ²¹⁰Pb daughter half life is 22.2 years and thus stays in the detector.
 - Any constant ingress of radon into the detector imposes an increasing background rate though the course of the experiment.
- Internal
 - Bulk Uranium and Thorium impurities in the AV
 - Bulk Ar contamination
 - Process system components emanation
- External to AV
 - Steel Shell, welds and surface
 - Filler-block high density polyethylene and construction materials
 - AV supports
 - Neck internals

Radon Control in DEAP-3600 (Mark Ward)

Radon Control - Material Selection

- Careful screening using gamma assay at SNOLAB to measure material suitability
- Large effort to ensure bulk acrylic for AV and light-guide is ultra pure.
 - No recycled material
 - Made from a monomer only casting process.
- Wetted process components to be stainless steel
 - Electropolished surface treatment
 - All welds specified to be non-thoriated
 - In house control of welds where possible

イロト 不得 トイヨト イヨト 二日

Radon Control - Acrylic Vessel

- Bulk acrylic is high purity, but...
- Radon daughters imbed to a depth of 50-100μm.
- Once installed acrylic vessel must be sealed from the mine air.
- Final treatment of the acrylic vessel will be to remove surface embedded radon and daughters via sanding.
 - \rightarrow Up to 2mm removal.
- Resurfacer robot is under construction at Queens to perform this task.

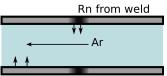
< ロ > < 同 > < 回 > < 回 >

Exposure during commissioning

- During commissioning the acrylic vessel will be exposed to the resurfacer robot, Glove box and a TPB evaporation source.
- Each component must meet strict targets Radon emanation rates
- Important not to re-contaminate the acrylic surface while attempting to clean

Component	Target Rn emanation rate	Exposure time
SNOLAB Air		\sim 6minutes
Resurfacer	2.2mBq	1 month
Glovebox	10mBq	1 Week
TPB applicator	10mBq	1 Week

Radon Control - Process Systems


- Process systems tasked to purify and liquify the argon and do so without emanating more than 5μ Bq Radon into the Argon.
- Ultra low background Radon emanation chamber constructed to qualify materials and cleaning methods.

 Focus of this system has been to test cleaning procedures for stainless steel

Radon emanation from TIG welds

Rn from surface recoil emission

- Electrode material has been assayed for ²³⁸U and ²³²Th and selected for cleanliness
- Emanation from bulk steel and welds into Argon
- Surface of weld and surrounding is more porous
- Experimentally determine the contributions

Process System Cleaning

- Ultrasonic cleaning in UPW and detergent
 - ightarrow Remove large contaminants, dust, oil
- Citric acid passivation
 - 10% by weight citric acid in UPW
 - Sample submerged at 60°C for 30 minutes
 - Ultrasonic clean in UPW
 - $\rightarrow\,$ Removal of top surface and reformation of a clean chromium oxide layer.

Emanation results

Sample	Emanation
Chamber Background	4.39 ± 1.85 Rn $/$ day
	$109\pm46\mu\mathrm{Bq}/\mathrm{m}^2$
1/2 inch electropolished Stainless tube	$92\pm30\mu\mathrm{Bq/m^2}$
Ultrasonic cleaning only	$1.8\pm0.6\mu\mathrm{Bq/m}^{st}$
550 welds on 38m of Stainless steel tube	$192\pm43\mu\mathrm{Bq/m^2}$
550 welds only	$100\pm52\mu{ m Bq}$
	$2.3\pm1.1\mu\mathrm{Bq/m}^{stst}$
383 welds on 24m of Stainless steel tube	$129\pm27\mu\mathrm{Bq/m^2}$
383 welds only	$38\pm40\mu{ m Bq}$
	$1.2\pm1.3\mu{ m Bq/m}$
550 passivated welds	$87\pm21\mu\mathrm{Bq/m^2}$

*Conservative for internal surface

**internal surface only

Conclusions

- Passivation appears to reduce emanation to similar levels as bulk stainless steel
- Analysis of residue left behind in the citric acid show Iron was being removed from the surface
- A new chromium oxide layer was formed
- Surface finish of the tube is brushed on the outside, electropolished on the inside
 - Smoother surfaces typically emanate less
 - Welding is from outside, inside weld surface could be cleaner.
 - Results given are thus conservative
- Inside weld surface condition/surface area is not yet known

イロト 不得 トイヨト イヨト 二日