Radiopurity measurement of acrylic for DEAP-3600

CAP Congress
University of Calgary
14 June 2012

Corina Nantais

M.Sc. candidate

corina.nantais@queensu.ca

DEAP-3600 dark matter experiment at SNOLAB

The acrylic vessel is the most critical component

Alpha backgrounds from contaminants at surface

Stringent radiopurity limits for acrylic vessel

Maximum tolerable concentrations:

```
0.3 \times 10<sup>-12</sup> g <sup>238</sup>U / g acrylic
1.3 \times 10<sup>-12</sup> g <sup>232</sup>Th / g acrylic
1.1 \times 10<sup>-20</sup> g <sup>210</sup>Pb / g acrylic
```

- 1. Vaporize 10 kg acrylic
- 2. Collect residue
- 3. Measure gammas from ²³⁸U and ²³²Th with germanium detector
- 4. Measure 210 Pb by counting 210 Po daughter with α -counter

Technique based on SNO, Appl. Radiat. Isot. 45, 539-547 (1994)

Vaporize PMMA then incinerate MMA

Acrylic vaporization system at SNOLAB

25 vaporizations performed during commissioning phase

Addition of air after vaporization removes carbon residue

Excessive carbon difficult to manage during acid rinse and counting

Chemical extraction to remove residue from quartz boat

10 kg sample is 5×2 kg blocks in same quartz boat

Rinse boat with aqua regia (3:1 by vol. HCl and HNO₃) on heated roller at 1 rpm for 1 h

Measure ²³⁸U and ²³²Th with HPGe detectors

SNOLAB has two coaxial detectors and a well detector for low energy gamma spectroscopy. New coaxial and well detectors are being commissioned now.

Measure ²¹⁰Pb by measuring ²¹⁰Po alpha decay

Allow ²¹⁰Po to build up in effluent for I month

Spontaeous deposition of polonium on nickel

J. Environ. Radioact. 102, 415-419 (2011)

Polonium and alpha spectroscopy

Nucl. Instrum. Methods Phys. Res. 223, 218-223 (1984)

Conclusions

In a direct dark matter search, background control is of utmost importance

The DEAP-3600 acrylic vessel is the most critical detector component and has stringent limits

We have developed an acrylic assay program based on acrylic vaporization

DEAP collaboration

University of Alberta: D. Grant, P. Gorel, A. Hallin, J. Soukup, C. Ng, B. Beltran, K. Olsen, R. Chouinard, T. McElroy, S. Crothers, S. Liu, P. Davis, A. Viangreiro Carleton University: K. Graham, C. Ouellet, C. Brown

Queen's University: M. Boulay, B. Cai, D. Bearse, K. Dering, M. Chen, S. Florian, R. Gagnon, V. Golovko, P. Harvey, M. Kuzniak, J. Lidgard, A. McDonald, C. Nantais,

A. Noble, E. O'Dwyer, P. Pasuthip, T. Pollmann, W. Rau, T. Sonley, P. Skensved, L. Veloce, M. Ward

SNOLAB/Laurentian: B. Cleveland, F. Duncan, R. Ford, C. Jillings, M. Batygov **SNOLAB**: I. Lawson, K. McFarlane, P. Liimatainen, O. Li, E. Vazquez Jauregui

TRIUMF: F. Retiere, A. Muir, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, C. Ohlmann, K. Olchanski, V. Strickland

Rutherford Appleton Laboratory: P. Majewski

Royal Holloway University in London: J. Monroe, J. Walding, A. Butcher

University of Sussex: S. Peeters

