

Counting Photons with the DEAP experiment

Pierre Gorel for the DEAP Collaboration

CAP 2012 Congress – 14 June 2012

DEAP 3600 overview

Pulse Shape Discrimination

- Counting algorithms
- Comparison between methods

DEAP @ SNOLAB

2km underground
5000m² of clean space

DEAP3600 detector

Courtesy: SNOLAB

Courtesy: Koby Dering

Liquid Argon scintillation

Two types of events : electronic...

... and nuclear recoils

... and nuclear recoils

N_{PE} : Continuous/Discrete

Continuous:

- Integration over the all waveform
- Division by the average SPE charge

N_{PE} : Continuous/Discrete

- Localization of every pulse
- Determination of the number of PE in the pulse
 - With maximum likelihood (small pulses)
 - With integration and division by the charge (large pulses)

Derivative and pulse finder

Pulse integration

- Pulse integration
- Pulse length

Pulse integration

Minimum derivative

Pulse length

- Pulse integration
- Pulse length

- Minimum derivative
- Q1525

PDF for each observables

- Maximum likelihood over the full waveform
 Weight of each number of PE
- Maximum likelihood over each pulse
 Most probable number of PE

Single PE pulse shape & Spectrum

Creation of an artificial waveform

Algorithm efficacy (DEAP-1 data)

Light yield

Algorithm efficacy (DEAP-1 data)

- Light yield
- Energy resolution

Algorithm efficacy (DEAP-1 data)

- Light yield
- Energy resolution
- Pulse shape discrimination efficiency

Comparison Continuous/Discrete

Preliminary !!!

	Continuous	Discrete
Light Yield (59keV): PE/keV	3.6	4.0
Energy resolution σ/Ε	0.128	0.127
PSD efficiency (50%)	< 10 ⁻⁸	< 10 ⁻⁷
PSD efficiency (90%)	< 10 ⁻⁷	<10-6

Analysis (Continuous): H. Mulcahy

Comparison Continuous/Discrete

Preliminary !!!

	Continuous	Discrete
Light Yield (59keV): PE/keV	3.6	4.0
Energy resolution σ/Ε	0.128	0.127
PSD efficiency (50%)	< 10 ⁻⁸	< 10 ⁻⁷
PSD efficiency (90%)	< 10 ⁻⁷	<10 ⁻⁶

Analysis (Continuous): H. Mulcahy

opunization

What about DEAP-3600 ?

- 255 PMTs => more electronic noise
- > The bands will get wider except if we can recognize it
- Full scale simulation work in progress

Current development of Discrete

- Main drawback: likelihood algorithm slow
 - DEAP-1: 2channels/ DEAP-3600: 255 channels
 - Rates higher in DEAP-3600
- Real time analysis for ³⁹Ar background rejection
- Parallelization of the process
 GPU computing / CUDA framework

Conclusion

- Discrete counting looks promising, with still some room for optimization
- Expected electronic noise makes the discrete counting a good contender for DEAP-3600
- Simulation work in progress to characterize the algorithm efficiencies with DEAP-3600